论文标题
使用时间启动模块的运动预测
Motion Prediction Using Temporal Inception Module
论文作者
论文摘要
人类运动预测是许多在机器人技术和自动驾驶中应用的必要组成部分。最近的方法建议使用序列到序列深度学习模型来解决此问题。但是,他们不专注于为不同的长度输入利用不同的时间尺度。我们认为,不同的时间尺度很重要,因为它们使我们能够以不同的接收场来查看过去的框架,这可以带来更好的预测。在本文中,我们提出了一个时间构成模块(TIM)来编码人类运动。利用Tim,我们的框架通过使用不同的内核大小来实现不同的输入长度,从而使用卷积层产生输入嵌入。标准运动预测基准数据集Human36M和CMU运动捕获数据集的实验结果表明,我们的方法始终优于最先进的方法。
Human motion prediction is a necessary component for many applications in robotics and autonomous driving. Recent methods propose using sequence-to-sequence deep learning models to tackle this problem. However, they do not focus on exploiting different temporal scales for different length inputs. We argue that the diverse temporal scales are important as they allow us to look at the past frames with different receptive fields, which can lead to better predictions. In this paper, we propose a Temporal Inception Module (TIM) to encode human motion. Making use of TIM, our framework produces input embeddings using convolutional layers, by using different kernel sizes for different input lengths. The experimental results on standard motion prediction benchmark datasets Human3.6M and CMU motion capture dataset show that our approach consistently outperforms the state of the art methods.