论文标题

使用截短的KDV统计力学,突然深度变化引起的异常波的严格标准

Rigorous criteria for anomalous waves induced by abrupt depth change using truncated KdV statistical mechanics

论文作者

Sun, Hui, Moore, Nicholas J.

论文摘要

截断的Korteweg-de Vries(TKDV)系统是一种具有较弱的湍流动力学的浅水波模型,可以准确预测在最近的实验室实验中观察到的异常波统计。 Majda等。 (2019年)开发了一种基于混合Gibbs度量的TKDV统计力学框架,该框架在固定能量表面(微域)表面支持,并在哈密顿量中采用通常的大核形式。本文报告了有关该合奏所隐含的表面置换分布的两个严格结果,这既在截止型波数$λ$的限制下都大。首先,我们证明,如果逆温度消失,微晶格统计量将$λ\至\ infty $收敛到高斯。其次,我们证明,如果不存在非线性,并且逆温度满足某些物理动机的缩放定律,则微晶格统计量将其作为$λ\ to \ infty $收敛到高斯。当不满足缩放定律时,简单的数值示例表明了在线性系统中出现的对称,但高度非高斯的位移统计量,这说明非线性并不是固定能量合奏中非正常性的严格要求。共同的新结果暗示了先前数值研究中观察到的异常波统计的必要条件。特别是,不断变化的逆温度以及非线性的存在或违反缩放定律是偏离高斯所必需的。第二个定理的证明涉及构建近似度量,我们发现这也阐明了在数值研究中观察到的特殊光谱衰减,并可能为改进采样算法打开门。

The truncated Korteweg-De Vries (TKdV) system, a shallow-water wave model with Hamiltonian structure that exhibits weakly turbulent dynamics, has been found to accurately predict the anomalous wave statistics observed in recent laboratory experiments. Majda et al. (2019) developed a TKdV statistical mechanics framework based on a mixed Gibbs measure that is supported on a surface of fixed energy (microcanonical) and takes the usual macroconical form in the Hamiltonian. This paper reports two rigorous results regarding the surface-displacement distributions implied by this ensemble, both in the limit of the cutoff wavenumber $Λ$ growing large. First, we prove that if the inverse temperature vanishes, microstate statistics converge to Gaussian as $Λ\to \infty$. Second, we prove that if nonlinearity is absent and the inverse-temperature satisfies a certain physically-motivated scaling law, then microstate statistics converge to Gaussian as $Λ\to \infty$. When the scaling law is not satisfied, simple numerical examples demonstrate symmetric, yet highly non-Gaussian, displacement statistics to emerge in the linear system, illustrating that nonlinearity is not a strict requirement for non-normality in the fixed-energy ensemble. The new results, taken together, imply necessary conditions for the anomalous wave statistics observed in previous numerical studies. In particular, non-vanishing inverse temperature and either the presence of nonlinearity or the violation of the scaling law are required for displacement statistics to deviate from Gaussian. The proof of this second theorem involves the construction of an approximating measure, which we find also elucidates the peculiar spectral decay observed in numerical studies and may open the door for improved sampling algorithms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源