论文标题

笛卡尔产品的最佳顶点 - 形式的最佳取向

Optimal orientations of vertex-multiplications of cartesian products of graphs

论文作者

Wong, W. H. W., Tay, E. G.

论文摘要

KOH和TAY证明了$ G $ VERTEX-MULTIPICATIONS的基本分类为三个类$ \ Mathscr {C} _0,\ Mathscr {C} _1 $和$ \ Mathscr {C} _2 $。在本文中,我们证明了$ \ times h $ tim in $ \ mathscr {c} _0 $($ \ mathscr {c} _0 \ cup \ cup \ mathscr {c} _1 $ rest。 ($ \ mathscr {c} _1 $ resp。),$ d(g)\ ge 2 $和$ d(g \ times h)\ ge 4 $。我们还专注于涉及树木,路径和周期的笛卡尔产品,并表明其中大多数位于$ \ Mathscr {C} _0 $中。

Koh and Tay proved a fundamental classification of $G$ vertex-multiplications into three classes $\mathscr{C}_0, \mathscr{C}_1$ and $\mathscr{C}_2$. In this paper, we prove that vertex-multiplications of cartesian products of graphs $G\times H$ lie in $\mathscr{C}_0$ ($\mathscr{C}_0\cup \mathscr{C}_1$ resp.) if $G^{(2)}\in \mathscr{C}_0$ ($\mathscr{C}_1$ resp.), $d(G)\ge 2$ and $d(G\times H)\ge 4$. We also focus on cartesian products involving trees, paths and cycles and show that most of them lie in $\mathscr{C}_0$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源