论文标题
无线传感器网络中分布式顺序估计的联合协作和压缩设计
Joint Collaboration and Compression Design for Distributed Sequential Estimation in a Wireless Sensor Network
论文作者
论文摘要
在这项工作中,我们提出了一个联合协作 - 压缩框架,用于在资源约束无线传感器网络(WSN)中对随机向量参数进行顺序估算。具体来说,我们提出了一个框架,本地传感器首先(通过协作矩阵)相互协作。然后,选择的传感器子集与FC进行通信,在传输前将观察值线性压缩。我们通过最小化顺序最小均方根误差的最小化,设计了功率约束下的近乎最佳的协作和线性压缩策略。我们表明,协作设计的目标函数可以根据网络拓扑为非凸态。我们使用二次约束二次计划(QCQP)重新重新制定并解决协作设计问题。此外,压缩设计问题也被表达为QCQP。我们提出了两个版本的压缩设计,一个集中化了压缩策略在FC和另一个分散的下放化中,该策略是本地传感器独立计算其单个压缩矩阵的。据指出,分散压缩策略的设计是一个非凸的问题。我们使用一分配方法获得了近乎理想的解决方案。与单发估计器相反,我们提出的算法能够处理动态系统参数,例如通道增益和能量约束。重要的是,我们表明所提出的方法也可以用于估计随时间变化的随机矢量参数。最后,提供数值结果以证明所提出的框架的有效性。
In this work, we propose a joint collaboration-compression framework for sequential estimation of a random vector parameter in a resource constrained wireless sensor network (WSN). Specifically, we propose a framework where the local sensors first collaborate (via a collaboration matrix) with each other. Then a subset of sensors selected to communicate with the FC linearly compress their observations before transmission. We design near-optimal collaboration and linear compression strategies under power constraints via alternating minimization of the sequential minimum mean square error. We show that the objective function for collaboration design can be non-convex depending on the network topology. We reformulate and solve the collaboration design problem using quadratically constrained quadratic program (QCQP). Moreover, the compression design problem is also formulated as a QCQP. We propose two versions of compression design, one centralized where the compression strategies are derived at the FC and the other decentralized, where the local sensors compute their individual compression matrices independently. It is noted that the design of decentralized compression strategy is a non-convex problem. We obtain a near-optimal solution by using the bisection method. In contrast to the one-shot estimator, our proposed algorithm is capable of handling dynamic system parameters such as channel gains and energy constraints. Importantly, we show that the proposed methods can also be used for estimating time-varying random vector parameters. Finally, numerical results are provided to demonstrate the effectiveness of the proposed framework.