论文标题
如果是答案,那么问题是什么?
If beam search is the answer, what was the question?
论文作者
论文摘要
令人惊讶的是,神经语言发生器的后验(MAP)解码通常会导致低质量的结果。相反,尽管搜索错误率极高,但使用Beam搜索实现了大多数语言生成任务的最新结果。这意味着单独的地图目标并不表达我们在文本中所需的属性,这值得一个问题:如果梁搜索是答案,那是什么问题?我们将光束搜索作为对不同解码目标的精确解决方案,以了解为什么单独使用模型下的高概率可能不会表明是否足够。我们发现,梁搜索在文本中执行统一的信息密度,这是一种由认知科学动机的属性。我们建议一组明确执行此属性的解码目标,并发现在解码校准较差的语言生成模型时,通过这些目标进行了确切的解码减轻了遇到的问题。此外,我们分析了使用各种解码策略所产生的文本,并看到在我们的神经机器翻译实验中,该特性遵循与BLEU密切相关的程度。
Quite surprisingly, exact maximum a posteriori (MAP) decoding of neural language generators frequently leads to low-quality results. Rather, most state-of-the-art results on language generation tasks are attained using beam search despite its overwhelmingly high search error rate. This implies that the MAP objective alone does not express the properties we desire in text, which merits the question: if beam search is the answer, what was the question? We frame beam search as the exact solution to a different decoding objective in order to gain insights into why high probability under a model alone may not indicate adequacy. We find that beam search enforces uniform information density in text, a property motivated by cognitive science. We suggest a set of decoding objectives that explicitly enforce this property and find that exact decoding with these objectives alleviates the problems encountered when decoding poorly calibrated language generation models. Additionally, we analyze the text produced using various decoding strategies and see that, in our neural machine translation experiments, the extent to which this property is adhered to strongly correlates with BLEU.