论文标题
三角形和四面体网格上的双旋转方程的混合有限元元素
A family of mixed finite elements for the biharmonic equations on triangular and tetrahedral grids
论文作者
论文摘要
本文介绍了一个新的混合有限元素系列,用于在两个维度和三个维度中求解Biharmonic方程的混合配方。在Sobolev space $ h({{\ rm {div}} \ bm {div},ω; \ mathbb {s})$同时与位移$ u $ in $ l^{2}(2} $Ω同时,对称应力$ \bmσ= - \bmσ= - \bmσ= - \bmσ= - \bmσ= - \bmσ= - \bmσ= - \bmσ源于$ h(\ bm {div},ω; \ mathbb {s})$符合元素的元素。 $ h(\ bm {div},ω; \ mathbb {s})$ h(\ bm {div})上的$ \ bm {div} \bmσ$的连续性。继承使基础功能易于计算。 $ U $的离散空间由分段$ p_ {k-2} $多项式组成,而无需任何连续性。这种混合有限元在三角形和四面体网格上以$ k \ geq 3 $稳定,并实现了最佳的收敛顺序。此外,还显示了超级融合和后处理结果。提供了一些数值实验来证明理论分析。
This paper introduces a new family of mixed finite elements for solving a mixed formulation of the biharmonic equations in two and three dimensions. The symmetric stress $\bmσ=-\nabla^{2}u$ is sought in the Sobolev space $H({\rm{div}}\bm{div},Ω;\mathbb{S})$ simultaneously with the displacement $u$ in $L^{2}(Ω)$. Stemming from the structure of $H(\bm{div},Ω;\mathbb{S})$ conforming elements for the linear elasticity problems proposed by J. Hu and S. Zhang, the $H({\rm{div}}\bm{div},Ω;\mathbb{S})$ conforming finite element spaces are constructed by imposing the normal continuity of $\bm{div}\bmσ$ on the $H(\bm{div},Ω;\mathbb{S})$ conforming spaces of $P_{k}$ symmetric tensors. The inheritance makes the basis functions easy to compute. The discrete spaces for $u$ are composed of the piecewise $P_{k-2}$ polynomials without requiring any continuity. Such mixed finite elements are inf-sup stable on both triangular and tetrahedral grids for $k\geq 3$, and the optimal order of convergence is achieved. Besides, the superconvergence and the postprocessing results are displayed. Some numerical experiments are provided to demonstrate the theoretical analysis.