论文标题
在平滑情况下,Milnor K理论的相对Gersten猜想
On the relative Gersten conjecture for Milnor K-theory in the smooth case
论文作者
论文摘要
我们表明,在优秀的离散估值环上平滑方案(首先,除了一定位置外,还可以通过与特殊光纤的通用点相关的离散估值环检查(首先可以检查)精确度,但在出色的离散估值环上平滑的方案(改进)的Gersten复合物是完全的。这补充了Gillet和Levine的K理论的结果,Geisser的动机共同学和Schmidt和Strunk以及作者的作者。
We show that the Gersten complex for the (improved) Milnor K-sheaf on a smooth scheme over an excellent discrete valuation ring is exact except at the first place and that exactness at the first place may be checked at the discrete valuation ring associated to the the generic point of the special fiber. This complements results of Gillet and Levine for K-theory, Geisser for motivic cohomology and Schmidt and Strunk and the author for étale cohomology.