论文标题

使用预训练的深卷积神经网和上下文挖掘的视频异常检测

Video Anomaly Detection Using Pre-Trained Deep Convolutional Neural Nets and Context Mining

论文作者

Wu, Chongke, Shao, Sicong, Tunc, Cihan, Hariri, Salim

论文摘要

异常检测对于智能监视系统至关重要,以便及时检测任何恶意活动。许多使用深度学习方法的视频异常检测方法集中在具有固定情况的单个相机视频流上。这些深度学习方法使用大规模的培训数据具有很大的复杂性。作为解决方案,在本文中,我们展示了如何使用预训练的卷积神经网模型执行特征提取和上下文挖掘,然后使用具有相对较低模型复杂性的DeNoising自动编码器来提供有效,准确的监视异常检测,这些检测可用于诸如事物Internet(IOT)等资源施加设备,例如Internet(IOT)。我们的异常检测模型基于从选定的嵌入式计算机视觉模型(例如对象分类和对象检测)得出的高级特征做出决策。此外,我们从高级特征中得出上下文属性,以进一步提高视频异常检测方法的性能。我们使用两个UCSD数据集来证明与最先进的方法相比,我们具有相对较低模型复杂性的方法可以实现可比的性能。

Anomaly detection is critically important for intelligent surveillance systems to detect in a timely manner any malicious activities. Many video anomaly detection approaches using deep learning methods focus on a single camera video stream with a fixed scenario. These deep learning methods use large-scale training data with large complexity. As a solution, in this paper, we show how to use pre-trained convolutional neural net models to perform feature extraction and context mining, and then use denoising autoencoder with relatively low model complexity to provide efficient and accurate surveillance anomaly detection, which can be useful for the resource-constrained devices such as edge devices of the Internet of Things (IoT). Our anomaly detection model makes decisions based on the high-level features derived from the selected embedded computer vision models such as object classification and object detection. Additionally, we derive contextual properties from the high-level features to further improve the performance of our video anomaly detection method. We use two UCSD datasets to demonstrate that our approach with relatively low model complexity can achieve comparable performance compared to the state-of-the-art approaches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源