论文标题
用实例依赖性标签噪声学习:样品筛方法
Learning with Instance-Dependent Label Noise: A Sample Sieve Approach
论文作者
论文摘要
人类宣传的标签通常容易出现噪声,并且这种噪声的存在将降低所得的深神经网络(DNN)模型的性能。嘈杂的标签的许多文献(最近有几个例外)都集中在标签噪声独立于特征时的情况下。实际上,注释错误倾向于取决于实例,并且通常取决于识别某个任务的困难级别。应用独立设置的现有结果将需要大量噪声率估计。因此,提供与实例有关的标签噪声提供理论上严格的学习解决方案仍然是一个挑战。在本文中,我们提出了核心$^{2} $(信心正规样品筛子),该筛子逐渐筛选出损坏的例子。内核的实现$^{2} $不需要指定噪声率,但是我们能够在滤除损坏的示例中提供核心$^{2} $的理论保证。这种高质量的样品筛子使我们能够在训练DNN解决方案中分别处理干净的示例,而损坏的示例分别是损坏的示例,并且在依赖实例的噪声设置中,这种分离被证明是有利的。我们演示了CIFAR10和CIFAR100数据集的核心$^{2} $具有综合实例依赖性标签噪声和服装1M的性能。根据独立的兴趣,我们的样品筛提供了一种通用的机械,用于解剖嘈杂的数据集,并为各种强大的训练技术提供了灵活的接口,以进一步提高性能。代码可在https://github.com/ucsc-real/cores上找到。
Human-annotated labels are often prone to noise, and the presence of such noise will degrade the performance of the resulting deep neural network (DNN) models. Much of the literature (with several recent exceptions) of learning with noisy labels focuses on the case when the label noise is independent of features. Practically, annotations errors tend to be instance-dependent and often depend on the difficulty levels of recognizing a certain task. Applying existing results from instance-independent settings would require a significant amount of estimation of noise rates. Therefore, providing theoretically rigorous solutions for learning with instance-dependent label noise remains a challenge. In this paper, we propose CORES$^{2}$ (COnfidence REgularized Sample Sieve), which progressively sieves out corrupted examples. The implementation of CORES$^{2}$ does not require specifying noise rates and yet we are able to provide theoretical guarantees of CORES$^{2}$ in filtering out the corrupted examples. This high-quality sample sieve allows us to treat clean examples and the corrupted ones separately in training a DNN solution, and such a separation is shown to be advantageous in the instance-dependent noise setting. We demonstrate the performance of CORES$^{2}$ on CIFAR10 and CIFAR100 datasets with synthetic instance-dependent label noise and Clothing1M with real-world human noise. As of independent interests, our sample sieve provides a generic machinery for anatomizing noisy datasets and provides a flexible interface for various robust training techniques to further improve the performance. Code is available at https://github.com/UCSC-REAL/cores.