论文标题
Ni掺杂MOS的相位稳定性和拉曼/红外签名来自密度功能理论研究
Phase Stability and Raman/IR Signatures of Ni-Doped MoS$_2$ from Density-Functional Theory Studies
论文作者
论文摘要
Ni掺杂的MOS $ _2 $是一种分层材料,具有有用的摩擦学,光电和催化特性。关于掺杂的MOS $ _2 $的实验和理论主要集中在单层或有限粒子上:缺乏大量Ni掺杂MOS $ _2 $的理论研究,而NI改变块状特性的机制在很大程度上没有尚未确定。我们使用密度函数理论计算来确定大量Ni掺杂2H-MOS $ _2 $的结构,机械性能,电子性能和形成能,这是掺杂浓度的函数。我们发现四个元稳定结构:MO或S取代,四面体(T-)或八面体(O-)插入。我们计算相图作为指导实验合成的化学潜力的函数。凸面船体分析表明,与相对于相位分离的T交换(优于O间分)非常稳定,并且与含有Ni,MO和S的其他化合物相比。掺杂地层能量约为0.1 MeV/原子。插入形成强大的层间共价债券,不会增加$ c $ - 参数。 Ni兴奋剂在MOS $ _2 $中的电子密度中创建了新状态,并移动费米水平,这是对电子和光学性质调整的感兴趣。我们计算红外线和拉曼光谱,发现每个掺杂剂位点独有的现有峰的新峰和变化,因此可用于实验识别该站点,这是最终做到的挑战。
Ni-doped MoS$_2$ is a layered material with useful tribological, optoelectronic, and catalytic properties. Experiment and theory on doped MoS$_2$ has focused mostly on monolayers or finite particles: theoretical studies of bulk Ni-doped MoS$_2$ are lacking and the mechanisms by which Ni alters bulk properties are largely unsettled. We use density functional theory calculations to determine the structure, mechanical properties, electronic properties, and formation energies of bulk Ni-doped 2H-MoS$_2$ as a function of doping concentration. We find four meta-stable structures: Mo or S substitution, and tetrahedral (t-) or octahedral (o-) intercalation. We compute phase diagrams as a function of chemical potential to guide experimental synthesis. A convex hull analysis shows that t-intercalation (favored over o-intercalation) is quite stable against phase segregation and in comparison with other compounds containing Ni, Mo, and S; the doping formation energy is around 0.1 meV/atom. Intercalation forms strong interlayer covalent bonds and does not increase the $c$-parameter. Ni-doping creates new states in the electronic density of states in MoS$_2$ and shifts the Fermi level, which are of interest for tuning the electronic and optical properties. We calculate the infrared and Raman spectra and find new peaks and shifts in existing peaks that are unique to each dopant site, and therefore may be used to identify the site experimentally, which has been a challenge to do conclusively.