论文标题

在Cray上的机器学习以优化油气勘探中的岩石物理工作流程

Machine learning on Crays to optimise petrophysical workflows in oil and gas exploration

论文作者

Brown, Nick, Roubickova, Anna, Lampaki, Ioanna, MacGregor, Lucy, Ellis, Michelle, de Newton, Paola Vera

论文摘要

石油和天然气行业的次面数据唤醒,用于表征海床下面的岩石和流体特性。反过来,这推动了商业决策和探索,但是该行业目前在处理数据时依赖于高度手动的工作流程。一个关键的问题是,是否可以使用机器学习来改善这一点,以补充寻找碳氢化合物的岩石物理学家的活动。在本文中,我们介绍了与Rock Solid Images(RSI)合作完成的工作,并在Cray XC30上使用监督的机器学习来训练简化手动数据解释过程的模型。以将岩石物理解释时间从7天的时间降低到7分钟的总体目的,在本文中,我们描述了使用原始井log数据训练的数学模型的使用,用于完成岩石物理解释工作流的四个阶段中的每个阶段,以及初始数据清洁。我们探讨了这些模型中的预测如何与人类货物物理学家的解释以及用于优化我们模型预测的许多选择和技术相比。现代超级计算机(例如Cray机器)提供的功率在这里至关重要,但是一些流行的机器学习框架无法充分利用现代HPC机器。因此,我们还将探讨我们使用的机器学习工具的适用性,并描述我们在其局限性方面采取的步骤。这项工作的结果是第一次可以在整个岩石物理工作流程中使用机器学习。尽管存在许多挑战,局限性和警告,但我们证明机器学习在地下数据的处理中具有重要作用。

The oil and gas industry is awash with sub-surface data, which is used to characterize the rock and fluid properties beneath the seabed. This in turn drives commercial decision making and exploration, but the industry currently relies upon highly manual workflows when processing data. A key question is whether this can be improved using machine learning to complement the activities of petrophysicists searching for hydrocarbons. In this paper we present work done, in collaboration with Rock Solid Images (RSI), using supervised machine learning on a Cray XC30 to train models that streamline the manual data interpretation process. With a general aim of decreasing the petrophysical interpretation time down from over 7 days to 7 minutes, in this paper we describe the use of mathematical models that have been trained using raw well log data, for completing each of the four stages of a petrophysical interpretation workflow, along with initial data cleaning. We explore how the predictions from these models compare against the interpretations of human petrophysicists, along with numerous options and techniques that were used to optimise the prediction of our models. The power provided by modern supercomputers such as Cray machines is crucial here, but some popular machine learning framework are unable to take full advantage of modern HPC machines. As such we will also explore the suitability of the machine learning tools we have used, and describe steps we took to work round their limitations. The result of this work is the ability, for the first time, to use machine learning for the entire petrophysical workflow. Whilst there are numerous challenges, limitations and caveats, we demonstrate that machine learning has an important role to play in the processing of sub-surface data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源