论文标题
哈密顿力学中的时间对称性破坏。 ii。 Berni Julian Alder的回忆录[1925-2020]
Time-Symmetry Breaking in Hamiltonian Mechanics. II. A Memoir for Berni Julian Alder [1925-2020]
论文作者
论文摘要
这本回忆录尊重已故的伯尼·朱利安·奥尔德(Berni Julian Alder),他以他的分子动力发展启发了我们俩。伯尼(Berni)与汤姆·温赖特(Tom Wainwright)的合作,1959年的科学美国人[1]在1962年在利弗莫尔(Livermore)进行了采访。伯尼(Berni)聘请了比尔(Berni)在实验室享受了40多年的研究。伯尼(Berni)与爱德华·泰勒(Edward Teller)一起,于1963年创立了UC的应用科学系。他们的动机是吸引聪明的学生使用实验室的无与伦比的研究设施。 1972年,卡罗尔(Carol)在利弗莫尔(Livermore)提供了联合LLNL员工-DAS学生任命。由于伯尼(Berni)的努力,比尔(Bill)已经是达斯(Das)的教授。卡罗尔成为比尔最好的学生之一。伯尼(Berni)的影响力直接负责我们的物理合作和1989年的婚姻。目前的工作致力于伯尼(Berni)的两种早期利益,不可逆性和冲击波。伯尼(Berni)和汤姆(Tom)研究了鲍尔茨曼(Boltzmann)在1950年代初[2]的“ H功能”的不可逆性。 Berni称Shockwaves是流体动力过程的“最不可逆的” [3]。就在过去的夏天,在用时间可逆的古典力学模拟冲击波时,我们发现逆转的runge-kutta冲击波模拟产生了非稳定的稀有波浪,而不是冲击。这一意外结果吸引了我们研究了两种波动类型中的指数Lyapunov稳定性。除了Runge-Kutta和LeapFrog算法外,我们还基于轨迹存储开发了一种精确可逆的许多体算法,只是更改速度的符号以生成反向轨迹。震动和稀有因素都完全逆转。向前和逆转的单独模拟提供了支持热力学第二定律的lyapunov unstable对称模型的有趣示例。我们描述了这项工作建议的有前途的研究指示。
This memoir honors the late Berni Julian Alder, who inspired both of us with his pioneering development of molecular dynamics. Berni's work with Tom Wainwright, described in the 1959 Scientific American[1], brought Bill to interview at Livermore in 1962. Hired by Berni, Bill enjoyed over 40 years' research at the Laboratory. Berni, along with Edward Teller, founded UC's Department of Applied Science in 1963. Their motivation was to attract bright students to use the laboratory's unparalleled research facilities. In 1972 Carol was offered a joint LLNL employee-DAS student appointment at Livermore. Bill, thanks to Berni's efforts, was already a Professor at DAS. Carol became one of Bill's best students. Berni's influence was directly responsible for our physics collaboration and our marriage in 1989. The present work is devoted to two early interests of Berni's, irreversibility and shockwaves. Berni and Tom studied the irreversibility of Boltzmann's "H function" in the early 1950s[2]. Berni called shockwaves the "most irreversible" of hydrodynamic processes[3]. Just this past summer, in simulating shockwaves with time-reversible classical mechanics, we found that reversed Runge-Kutta shockwave simulations yielded nonsteady rarefaction waves, not shocks. Intrigued by this unexpected result we studied the exponential Lyapunov instabilities in both wave types. Besides the Runge-Kutta and Leapfrog algorithms, we developed a precisely-reversible manybody algorithm based on trajectory storing, just changing the velocities' signs to generate the reversed trajectories. Both shocks and rarefactions were precisely reversed. Separate simulations, forward and reversed, provide interesting examples of the Lyapunov-unstable symmetry-breaking models supporting the Second Law of Thermodynamics. We describe promising research directions suggested by this work.