论文标题
超对称高旋转连接的层次结构
Hierarchy of Supersymmetric Higher Spin Connections
论文作者
论文摘要
我们专注于自由式高级超级杂志的几何重新印度,价格为$ 4 \ rm {d},〜\ Mathcal {n} = 1 $ flat superspace。我们发现有一个de-wit-Freedman,例如具有简单仪表转换的超级连接的层次结构。明智的自由运动方程的要求对量规参数超级场地施加了约束。与非对称情况不同,我们发现几种不同的约束可以使较高的超级连接分解。通过通过补偿器非晶型限制来提起这些约束,我们恢复了所有已知的任意整数和半智能仪表超级典型的描述。在受约束的公式中,我们发现了半企业超级全能的新描述,从而将线性性超级重力的新的最小和病毒配方推广到较高的自旋。但是,可以使用补偿器制定此描述。如果可以纯粹用超级连接表示,则可以将各种描述标记为几何或非地形图。
We focus on the geometrical reformulation of free higher spin supermultiplets in $4\rm{D},~\mathcal{N}=1$ flat superspace. We find that there is a de Wit-Freedman like hierarchy of superconnections with simple gauge transformations. The requirement for sensible free equations of motion imposes constraints on the gauge parameter superfields. Unlike the nonsupersymmetric case, we find several different constraints that can decouple the higher superconnections. By lifting these constraints nongeometrically via compensators we recover all known descriptions of arbitrary integer and half-integer gauge supermultiplets. In the constrained formulation we find a new description of half-integer supermultiplets, generalizing the new-minimal and virial formulations of linearized supergravity to higher spins. However this description can be formulated using compensators. The various descriptions can be labeled as geometrical or nongeometrical if the equations of motion can be expressed purely in terms of superconnections or not.