论文标题

深度不完整的多视图多个集群

Deep Incomplete Multi-View Multiple Clusterings

论文作者

Wei, Shaowei, Wang, Jun, Yu, Guoxian, Domeniconi, Carlotta, Zhang, Xiangliang

论文摘要

多视图聚类旨在利用多个异质视图中的信息来促进聚类。大多数以前的作品仅根据预定义的聚类标准搜索一个最佳聚类,但是设计了一种捕获用户所需内容的标准。由于多视图数据的多样性,我们可以拥有有意义的替代聚类。此外,不完整的多视图数据问题在现实世界中无处不在,但尚未研究多个聚类。 为了解决这些问题,我们引入了深层不完整的多视图多个聚类(DIMVMC)框架,该框架通过优化多个解码器深网络来实现数据视图的完成和多个共享表示。此外,它可以最大程度地减少同时%使用Hilbert-Schmidt独立标准(HSIC)来控制这些表示形式之间以及不同网络参数之间的多样性。接下来,它从每个共享表示形式中产生一个单独的聚类。基准数据集上的实验证实,DIMVMC在产生具有高度多样性和质量的多个聚类方面优于最先进的竞争者。

Multi-view clustering aims at exploiting information from multiple heterogeneous views to promote clustering. Most previous works search for only one optimal clustering based on the predefined clustering criterion, but devising such a criterion that captures what users need is difficult. Due to the multiplicity of multi-view data, we can have meaningful alternative clusterings. In addition, the incomplete multi-view data problem is ubiquitous in real world but has not been studied for multiple clusterings. To address these issues, we introduce a deep incomplete multi-view multiple clusterings (DiMVMC) framework, which achieves the completion of data view and multiple shared representations simultaneously by optimizing multiple groups of decoder deep networks. In addition, it minimizes a redundancy term to simultaneously %uses Hilbert-Schmidt Independence Criterion (HSIC) to control the diversity among these representations and among parameters of different networks. Next, it generates an individual clustering from each of these shared representations. Experiments on benchmark datasets confirm that DiMVMC outperforms the state-of-the-art competitors in generating multiple clusterings with high diversity and quality.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源