论文标题

非线性非铁系统中的超指定扩散

Super-exponential diffusion in nonlinear non-Hermitian systems

论文作者

Zhao, Wen-Lei, Zhou, Longwen, Liu, Jie, Tong, Peiqing, Huang, Kaiqian

论文摘要

我们研究了受到非线性引起的自我互动和$ \ Mathcal {pt} $对称电位的定期踢粒子的量子扩散。我们发现,由于非线性和非热性之间的相互作用,动量尺度的均等量表的期望值与超级表格形式的时间$ \ langle p^2(t)\ rangle \ propto \ propto \ propto \ exp [β\ exp [β\ exp(αt)] $,比量子差的任何已知速率更易于速度。在$ \ Mathcal {pt} $ - 对称阶段,状态的强度随时间呈指数增长,从而导致相互作用强度的指数增长。强度依赖性非线性的反馈进一步将相互作用能量转化为动能,从而导致平均能量的超指数生长。这些理论预测与$ \ cal {pt} $ - 对称非线性踢粒子中的数值模拟非常吻合。我们的发现建立了一种在相互作用和耗散量子系统中扩散的新机制。讨论了重要的含义和可能的实验观察。

We investigate the quantum diffusion of a periodically kicked particle subjecting to both nonlinearity induced self-interactions and $\mathcal{PT}$-symmetric potentials. We find that, due to the interplay between the nonlinearity and non-Hermiticity, the expectation value of mean square of momentum scales with time in a super-exponential form $\langle p^2(t)\rangle\propto\exp[β\exp(αt)]$, which is faster than any known rates of quantum diffusion. In the $\mathcal{PT}$-symmetry-breaking phase, the intensity of a state increases exponentially with time, leading to the exponential growth of the interaction strength. The feedback of the intensity-dependent nonlinearity further turns the interaction energy into the kinetic energy, resulting in a super-exponential growth of the mean energy. These theoretical predictions are in good agreement with numerical simulations in a $\cal{PT}$-symmetric nonlinear kicked particle. Our discovery establishes a new mechanism of diffusion in interacting and dissipative quantum systems. Important implications and possible experimental observations are discussed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源