论文标题
哈米尔顿港差分 - 代数方程的线性关系方法
A linear relation approach to port-Hamiltonian differential-algebraic equations
论文作者
论文摘要
我们考虑线性港口港口差分差异方程(ph-daes)。受Maschke和Van der Schaft的几何方法以及Mehl,Mehrmann和Wojtylak的线性代数方法的启发,我们使用线性关系理论提出了另一种观点。我们表明,这允许详细说明几何和线性代数观点的差异和相互关系,并且我们引入了一类DAE,其中包括这两种方法。我们进一步研究了通过线性关系引起的基质铅笔的特性。
We consider linear port-Hamiltonian differential-algebraic equations (pH-DAEs). Inspired by the geometric approach of Maschke and van der Schaft and the linear algebraic approach of Mehl, Mehrmann and Wojtylak, we present another view by using the theory of linear relations. We show that this allows to elaborate the differences and mutualities of the geometric and linear algebraic views, and we introduce a class of DAEs which comprises these two approaches. We further study the properties of matrix pencils arising from our approach via linear relations.