论文标题

通过张量完成取消非线性自我干扰

Non-Linear Self-Interference Cancellation via Tensor Completion

论文作者

Jochems, Freek, Balatsoukas-Stimming, Alexios

论文摘要

非线性自我干扰(SI)取消是全双工通信中的一个基本问题,通常使用多项式模型或神经网络来解决。在这项工作中,我们探讨了一种基于低级张量完成(称为规范系统识别(CSID))的最近提出的方法的适用性,以非线性SI取消。我们的结果表明,CSID在建模和取消非线性SI信号方面非常有效,并且计算复杂性比现有方法的计算复杂性较低,尽管以增加内存需求为代价。

Non-linear self-interference (SI) cancellation constitutes a fundamental problem in full-duplex communications, which is typically tackled using either polynomial models or neural networks. In this work, we explore the applicability of a recently proposed method based on low-rank tensor completion, called canonical system identification (CSID), to non-linear SI cancellation. Our results show that CSID is very effective in modeling and cancelling the non-linear SI signal and can have lower computational complexity than existing methods, albeit at the cost of increased memory requirements.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源