论文标题

通过选择性推断,量化基于神经网络的图像分割的统计显着性

Quantifying Statistical Significance of Neural Network-based Image Segmentation by Selective Inference

论文作者

Duy, Vo Nguyen Le, Iwazaki, Shogo, Takeuchi, Ichiro

论文摘要

尽管大量文献与使用深神经网络(DNN)的图像分割方法有关,但对评估分割结果的统计可靠性的关注减少了。在这项研究中,我们将分割结果解释为由DNN驱动的假设(称为DNN驱动的假设),并提出了一种在统计假设检验框架内量化这些假设的可靠性的方法。具体而言,我们考虑了对象和背景区域之间差异的统计假设检验。这个问题是具有挑战性的,因为差异将是错误的,因为DNN适应了数据。为了克服这一困难,我们引入了有条件的选择性推理(SI)框架 - 数据驱动的假设的新统计推理框架,最近受到了广泛关注 - 以计算分段结果的精确(非征求力)有效的P值。为了将条件SI框架用于基于DNN的分割,我们基于同型方法开发了一种新的SI算法,该算法使我们能够得出DNN驱动假设的确切(非偶然)采样分布。我们对合成和现实世界数据集进行实验,通过该实验,我们提供的证据表明,我们提出的方法可以成功控制误报率,在计算效率方面具有良好的性能,并且在将医疗图像数据应用于医疗图像数据时可以提供良好的结果。

Although a vast body of literature relates to image segmentation methods that use deep neural networks (DNNs), less attention has been paid to assessing the statistical reliability of segmentation results. In this study, we interpret the segmentation results as hypotheses driven by DNN (called DNN-driven hypotheses) and propose a method by which to quantify the reliability of these hypotheses within a statistical hypothesis testing framework. Specifically, we consider a statistical hypothesis test for the difference between the object and background regions. This problem is challenging, as the difference would be falsely large because of the adaptation of the DNN to the data. To overcome this difficulty, we introduce a conditional selective inference (SI) framework -- a new statistical inference framework for data-driven hypotheses that has recently received considerable attention -- to compute exact (non-asymptotic) valid p-values for the segmentation results. To use the conditional SI framework for DNN-based segmentation, we develop a new SI algorithm based on the homotopy method, which enables us to derive the exact (non-asymptotic) sampling distribution of DNN-driven hypothesis. We conduct experiments on both synthetic and real-world datasets, through which we offer evidence that our proposed method can successfully control the false positive rate, has good performance in terms of computational efficiency, and provides good results when applied to medical image data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源