论文标题

在由笛卡尔产品确定的方向和广义Paley图的集团数量

On the directions determined by Cartesian products and the clique number of generalized Paley graphs

论文作者

Yip, Chi Hoi

论文摘要

众所周知,笛卡尔产品$ a \ times b \ subset ag(2,p)$至少是$ | a || b | - \ min \ {| a |,| b | \} + 2 $,提供$ p $是prime和$ | a || b | <p $。这意味着在$ \ mathbb {f} _p $上的Paley图的集团数字上最著名的上限。在本文中,我们将此结果扩展到$ ag(2,q)$,其中$ q $是主要功率。我们还对$ \ mathbb {f} _q $的总体数量的集团数量进行了改进的上限。特别是,对于立方paley图,我们将琐碎的上限$ \ sqrt {q} $提高到$ 0.769 \ sqrt {q}+1 $。通常,作为我们的主要结果的应用,对于任何正函数$ h $,以便$ h(x)= o(x)$($ x \ to \ infty $),我们改善了几乎所有非squares $ q $ q $ q $ q $ q $ q $ q $。

It is known that the number of directions formed by a Cartesian product $A \times B \subset AG(2,p)$ is at least $|A||B| - \min\{|A|,|B|\} + 2$, provided $p$ is prime and $|A||B|<p$. This implies the best known upper bound on the clique number of the Paley graph over $\mathbb{F}_p$. In this paper, we extend this result to $AG(2,q)$, where $q$ is a prime power. We also give improved upper bounds on the clique number of generalized Paley graphs over $\mathbb{F}_q$. In particular, for a cubic Paley graph, we improve the trivial upper bound $\sqrt{q}$ to $0.769\sqrt{q}+1$. In general, as an application of our key result on the number of directions, for any positive function $h$ such that $h(x)=o(x)$ as $x \to \infty$, we improve the trivial upper bound $\sqrt{q}$ to $\sqrt{q}-h(p)$ for almost all non-squares $q$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源