论文标题
元视:对象检测的不确定性量化和预测质量估计
MetaDetect: Uncertainty Quantification and Prediction Quality Estimates for Object Detection
论文作者
论文摘要
在使用深神经网络检测的对象检测中,智慧的对象分数往往过于自信,有时甚至表明对存在不准确的预测有很高的信心。因此,预测和可靠的不确定性的可靠性是最高的。在这项工作中,我们提出了一种后处理方法,该方法对于任何给定的神经网络提供了预测性不确定性估计和质量估计。这些估计是通过后处理模型来学习的,该模型以结构化数据集的形式接收一组手工制作的透明指标。从那里开始,我们将学习两个用于预测边界框的任务。我们区分真实的阳性($ \ Mathit {iou} \ geq0.5 $)和误报($ \ mathit {iou} <0.5 $),我们将其称为元分类,我们预测$ \ mathit {iou} $值直接将我们称为meta回归。元分类模型的概率旨在学习成功和失败的概率,因此提供了建模的预测不确定性估计。另一方面,元回归产生了质量估计。在数值实验中,我们使用公开可用的Yolov3网络和更快的RCNN网络,并评估Kitti,Pascal VOC和COCO数据集上的元分类和回归性能。我们证明了我们的指标确实与$ \ mathit {iou} $相关。对于元分类,我们获得了高达98.92%的分类精度,而AUROCs的分类精度最高为99.93%。对于元回归,我们获得的$ r^2 $值最高为91.78%。与其他网络的物体得分和其他基线方法相比,这些结果可取得显着改善。因此,我们获得了更可靠的不确定性和质量估计,在没有地面真理的情况下,这特别有趣。
In object detection with deep neural networks, the box-wise objectness score tends to be overconfident, sometimes even indicating high confidence in presence of inaccurate predictions. Hence, the reliability of the prediction and therefore reliable uncertainties are of highest interest. In this work, we present a post processing method that for any given neural network provides predictive uncertainty estimates and quality estimates. These estimates are learned by a post processing model that receives as input a hand-crafted set of transparent metrics in form of a structured dataset. Therefrom, we learn two tasks for predicted bounding boxes. We discriminate between true positives ($\mathit{IoU}\geq0.5$) and false positives ($\mathit{IoU} < 0.5$) which we term meta classification, and we predict $\mathit{IoU}$ values directly which we term meta regression. The probabilities of the meta classification model aim at learning the probabilities of success and failure and therefore provide a modelled predictive uncertainty estimate. On the other hand, meta regression gives rise to a quality estimate. In numerical experiments, we use the publicly available YOLOv3 network and the Faster-RCNN network and evaluate meta classification and regression performance on the Kitti, Pascal VOC and COCO datasets. We demonstrate that our metrics are indeed well correlated with the $\mathit{IoU}$. For meta classification we obtain classification accuracies of up to 98.92% and AUROCs of up to 99.93%. For meta regression we obtain an $R^2$ value of up to 91.78%. These results yield significant improvements compared to other network's objectness score and other baseline approaches. Therefore, we obtain more reliable uncertainty and quality estimates which is particularly interesting in the absence of ground truth.