论文标题
重建来自Stellar $ r $ r $ - 过程的符号的合并中子星的群体
Reconstructing Masses of Merging Neutron Stars from Stellar $R$-Process Abundance Signatures
论文作者
论文摘要
中子星星(NSM)是快速中子捕获(“ $ r $ - ”)过程的有前途的天体物理地点,但是它们的集成产量可以解释银河系中的大部分重元素材料吗?一种解决这个问题的方法采用了一种远期方法,该方法传播了NSM速率和产量以及出色的形成率,最终将这些结果与观察到的化学丰度$ r $ r $ $ $ $ $ $ r $ r的金属贫困恒星进行了比较。在这项工作中,我们通过利用金属贫困星的$ r $ - 过程 - 元素元素丰度比例来采用反向方法,作为重建$ r $ $ $ - 过程恒星的中子星(NS)二进制二进制祖先的属性的输入。这项新颖的分析提供了一种独立的途径,用于研究原始的中子星二进制系统的种群,该系统合并并生产了银河金属贫乏的光环恒星中的$ r $ process材料。我们使用通常与限量 - $ r $工艺和actacinide区域相关的元素与兰烷基区域(即Zr/dy和th/dy)的元素的比率来探测祖先合并的NS质量。我们发现,NSM可以说明所有$ r $ $ $ process的材料,这些材料显示出$ r $ process签名,同时又重现了Double-NS(DNS)系统的当今分布。但是,最$ r $ - 过程增强的恒星($ r $ -II恒星)本身需要非常非对称系统的祖细胞NSM,这些NSM与Galaxy中当前的恒星截然不同。由于该分析是依赖模型的,因此我们还探索了与潜在理论和观察性更新的未来期望一致的变化,并评论这些变化如何影响我们的结果。
Neutron star mergers (NSMs) are promising astrophysical sites for the rapid neutron-capture ("$r$-") process, but can their integrated yields explain the majority of heavy-element material in the Galaxy? One method to address this question has utilized a forward approach that propagates NSM rates and yields along with stellar formation rates, in the end comparing those results with observed chemical abundances of $r$-process-rich, metal-poor stars. In this work, we take the inverse approach by utilizing $r$-process-element abundance ratios of metal-poor stars as input to reconstruct the properties---especially the masses---of the neutron star (NS) binary progenitors of the $r$-process stars. This novel analysis provides an independent avenue for studying the population of the original neutron star binary systems that merged and produced the $r$-process material incorporated in Galactic metal-poor halo stars. We use ratios of elements typically associated with the limited-$r$ process and the actinide region to those in the lanthanide region (i.e., Zr/Dy and Th/Dy) to probe the NS masses of the progenitor merger. We find that NSMs can account for all $r$-process material in metal-poor stars that display $r$-process signatures, while simultaneously reproducing the present-day distribution of double-NS (DNS) systems. However, the most $r$-process enhanced stars (the $r$-II stars) on their own would require progenitor NSMs of very asymmetric systems that are distinctly different from present ones in the Galaxy. As this analysis is model-dependent, we also explore variations in line with future expectation regarding potential theoretical and observational updates, and comment on how these variations impact our results.