论文标题

AIFNET:使用深度学习进行灌注分析的自动血管功能估计

AIFNet: Automatic Vascular Function Estimation for Perfusion Analysis Using Deep Learning

论文作者

de la Rosa, Ezequiel, Sima, Diana M., Menze, Bjoern, Kirschke, Jan S., Robben, David

论文摘要

灌注成像在急性缺血性卒中至关重要,对于量化可挽救的半阴茎和不可逆损害的核心病变至关重要。因此,它有助于临床医生决定最佳再灌注治疗方法。在灌注CT成像中,使用反卷积方法来获得可解释的灌注参数,允许识别脑组织异常。反卷积方法需要选择两个参考血管函数作为模型的输入:动脉输入函数(AIF)和静脉输出函数,将AIF作为最关键的模型输入。手动执行时,血管功能的选择是时间的要求,遭受了可重复性差,并且会受到专业人员的经验。这可能导致对半月和核心病变的潜在不可靠的量化,因此可能会损害治疗决策过程。在这项工作中,我们使用AIFNET自动化了灌注分析,这是一种估计血管功能的全自动和端到端的可训练的深度学习方法。与以前使用聚类或分割技术选择血管体素的方法不同,AIFNET在血管函数估计下直接优化,从而可以更好地识别时间曲线轮廓。对公共Isles18冲程数据库的验证表明,AIFNET达到血管函数估计的评估者性能,随后,通过反向卷积获得的参数图和核心病变量化。我们得出的结论是,AIFNET具有临床转移的潜力,可以将其纳入灌注卷积软件中。

Perfusion imaging is crucial in acute ischemic stroke for quantifying the salvageable penumbra and irreversibly damaged core lesions. As such, it helps clinicians to decide on the optimal reperfusion treatment. In perfusion CT imaging, deconvolution methods are used to obtain clinically interpretable perfusion parameters that allow identifying brain tissue abnormalities. Deconvolution methods require the selection of two reference vascular functions as inputs to the model: the arterial input function (AIF) and the venous output function, with the AIF as the most critical model input. When manually performed, the vascular function selection is time demanding, suffers from poor reproducibility and is subject to the professionals' experience. This leads to potentially unreliable quantification of the penumbra and core lesions and, hence, might harm the treatment decision process. In this work we automatize the perfusion analysis with AIFNet, a fully automatic and end-to-end trainable deep learning approach for estimating the vascular functions. Unlike previous methods using clustering or segmentation techniques to select vascular voxels, AIFNet is directly optimized at the vascular function estimation, which allows to better recognise the time-curve profiles. Validation on the public ISLES18 stroke database shows that AIFNet reaches inter-rater performance for the vascular function estimation and, subsequently, for the parameter maps and core lesion quantification obtained through deconvolution. We conclude that AIFNet has potential for clinical transfer and could be incorporated in perfusion deconvolution software.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源