论文标题

关于Matkowski的平衡属性意味着

On the balancing property of Matkowski means

论文作者

Kiss, Tibor

论文摘要

令$ i \ subseteq \ mathbb {r} $为非空的subinterval。我们说,如果,对于所有$ x,y \ in i $,equality \ begin {equation} \ tag {1} m \ big(m(x,m(x,y)),m(m(x,y),y)\ big)= m(x,y)\ end {equation {equation}保持。 上述方程已由几位作者进行了研究。 Georg Aumann于1935年迈出了一个显着的步骤。除其他外,他解决了(1),并获得了准算术手段作为解决方案。然后,两年后,他证明了(1)表征了\ emph {常规} Quasi-arithmetic Menetic Menecenter Mene之间,其中,不同的性能自然而然。 2015年,Lucio R. Berrone研究了一个更通用的方程式,具有对称性和严格的单调性,证明了通用解决方案是准算术手段,但前提是所涉及的手段是\ emph {连续可区分的}。 本文的目的是解决(1),而在一类两种变量的手段中没有可区分性假设,其中包含\ emph {matkowski Mene含义}的类别。

Let $I\subseteq\mathbb{R}$ be a nonempty open subinterval. We say that a two-variable mean $M:I\times I\to\mathbb{R}$ enjoys the \emph{balancing property} if, for all $x,y\in I$, the equality \begin{equation}\tag{1} M\big(M(x,M(x,y)),M(M(x,y),y)\big)=M(x,y) \end{equation} holds. The above equation has been investigated by several authors. The first remarkable step was made by Georg Aumann in 1935. Assuming, among other things, that $M$ is \emph{analytic}, he solved (1) and obtained quasi-arithmetic means as solutions. Then, two years later, he proved that (1) characterizes \emph{regular} quasi-arithmetic means among Cauchy means, where, the differentiability assumption appears naturally. In 2015, Lucio R. Berrone, investigating a more general equation, having symmetry and strict monotonicity, proved that the general solutions are quasi-arithmetic means, provided that the means in question are \emph{continuously differentiable}. The aim of this paper is to solve (1), without differentiability assumptions in a class of two-variable means, which contains the class of \emph{Matkowski means}.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源