论文标题

迭代的投影位置算法,用于在二维中构建定期和非周期性绝缘体的指数局部概括性渗透函数,较高

The Iterated Projected Position Algorithm for Constructing Exponentially Localized Generalized Wannier Functions for Periodic and Non-Periodic Insulators in Two Dimensions and Higher

论文作者

Stubbs, Kevin D., Watson, Alexander B., Lu, Jianfeng

论文摘要

局部基础在理解电子结构中起着重要作用。在周期性的绝缘子中,局部基础的自然选择是由Wannier函数给出的,该函数取决于被称为量规变换的单一变换的选择。在过去的几十年中,有许多工作重点是优化量规的选择,以便相应的Wannier函数是最大程度地定位的或反映了基础系统的某些对称性。在这项工作中,我们考虑了通常的非周期性材料,在这些材料中,通常无法很好地定义材料,并且不可能仪表优化。为了解决周期性和非周期性系统中指数局部局部的通用Wannier函数的问题,我们讨论了“迭代投影位置(IPP)”算法。 IPP算法基于矩阵对角线化,因此与基于优化的方法不同,它不需要初始化,并且不能陷入局部最小值。此外,通过严格的分析来保证IPP算法在某些轻度假设下产生指数局部的函数。 We numerically demonstrate that the IPP algorithm can be used to calculate exponentially localized bases for the Haldane model, the Kane-Mele model (in both $\mathbb{Z}_2$ invariant even and $\mathbb{Z}_2$ invariant odd phases), and the $p_x + i p_y$ model on a quasi-crystal lattice.

Localized bases play an important role in understanding electronic structure. In periodic insulators, a natural choice of localized basis is given by the Wannier functions which depend a choice of unitary transform known as a gauge transformation. Over the past few decades, there have been many works which have focused on optimizing the choice of gauge so that the corresponding Wannier functions are maximally localized or reflect some symmetry of the underlying system. In this work, we consider fully non-periodic materials where the usual Wannier functions are not well defined and gauge optimization is impossible. To tackle the problem of calculating exponentially localized generalized Wannier functions in both periodic and non-periodic system we discuss the "Iterated Projected Position (IPP)" algorithm. The IPP algorithm is based on matrix diagonalization and therefore unlike optimization based approaches it does not require initialization and cannot get stuck at a local minimum. Furthermore, the IPP algorithm is guaranteed by a rigorous analysis to produce exponentially localized functions under certain mild assumptions. We numerically demonstrate that the IPP algorithm can be used to calculate exponentially localized bases for the Haldane model, the Kane-Mele model (in both $\mathbb{Z}_2$ invariant even and $\mathbb{Z}_2$ invariant odd phases), and the $p_x + i p_y$ model on a quasi-crystal lattice.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源