论文标题

Autotici:在急性缺血患者的2D DSA图像上自动脑组织再灌注评分

autoTICI: Automatic Brain Tissue Reperfusion Scoring on 2D DSA Images of Acute Ischemic Stroke Patients

论文作者

Su, Ruisheng, Cornelissen, Sandra A. P., van der Sluijs, Matthijs, van Es, Adriaan C. G. M., van Zwam, Wim H., Dippel, Diederik W. J., Lycklama, Geert, van Doormaal, Pieter Jan, Niessen, Wiro J., van der Lugt, Aad, van Walsum, Theo

论文摘要

脑梗塞(TICI)评分的溶栓是急性缺血性中风的再灌注疗法评估的重要度量。它通常用作血管内治疗(EVT)后的技术结果指标。现有的TICI得分是根据视觉检查在粗序等级中定义的,从而导致观察者间和观察者的变化。在这项工作中,我们提出了一种自动和定量的TICI评分方法Autotici。首先,使用多路径卷积神经网络(CNN),每个数字减法血管造影(DSA)的采集分为四个阶段(非对比度,动脉,实质和静脉相),这些卷积神经网络(CNN)利用时空特征。该网络还以状态转换矩阵的形式结合了序列级别的依赖性。接下来,使用运动校正的动脉和实质框架计算最小强度图(小型)。在微小图像上,分割了血管,灌注和背景像素。最后,我们将Autotici评分量化为EVT之后的Reperfed Pixels的比率。在常规获取的多中心数据集中,所提出的自动体与扩展的TICI(ETECI)参考良好的相关性与曲线下的平均面积(AUC)得分为0.81。相对于二分法ETETI,AUC得分为0.90。在临床结果预测方面,我们证明了自动肌总体上与ETECI相当。

The Thrombolysis in Cerebral Infarction (TICI) score is an important metric for reperfusion therapy assessment in acute ischemic stroke. It is commonly used as a technical outcome measure after endovascular treatment (EVT). Existing TICI scores are defined in coarse ordinal grades based on visual inspection, leading to inter- and intra-observer variation. In this work, we present autoTICI, an automatic and quantitative TICI scoring method. First, each digital subtraction angiography (DSA) acquisition is separated into four phases (non-contrast, arterial, parenchymal and venous phase) using a multi-path convolutional neural network (CNN), which exploits spatio-temporal features. The network also incorporates sequence level label dependencies in the form of a state-transition matrix. Next, a minimum intensity map (MINIP) is computed using the motion corrected arterial and parenchymal frames. On the MINIP image, vessel, perfusion and background pixels are segmented. Finally, we quantify the autoTICI score as the ratio of reperfused pixels after EVT. On a routinely acquired multi-center dataset, the proposed autoTICI shows good correlation with the extended TICI (eTICI) reference with an average area under the curve (AUC) score of 0.81. The AUC score is 0.90 with respect to the dichotomized eTICI. In terms of clinical outcome prediction, we demonstrate that autoTICI is overall comparable to eTICI.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源