论文标题
没有赤道杂斜曲线的音量保护图的拓扑动力学
Topological Dynamics of Volume-Preserving Maps Without an Equatorial Heteroclinic Curve
论文作者
论文摘要
了解高维动力系统的相位空间的拓扑结构对于众多应用至关重要,包括计算化学反应速率和太阳系中物体的运输。已经开发了许多拓扑技术来研究二维(2D)相位空间的地图,但是将这些技术扩展到更高维度通常是一个主要的挑战,甚至是不可能的。以前,一种这样的技术,即同位叶动力学(HLD),已被推广,以分析三个维度在三个维度中的柔软固定点的稳定且不稳定的歧管。这项先前的工作假定存在赤道杂斜交叉曲线,这是2D情况的自然概括。目前的工作将先前的分析扩展到不存在此类赤道曲线的情况,但是在相交曲线的情况下,可能存在连接固定点的情况。为了将HLD扩展到这种情况,我们将透视图从固定点的不变歧管转移到由固定点到固定点交叉点形成的不变圆的不变歧管。 HLD技术的输出是对不变歧管的最低层拓扑结构的符号描述。我们通过一系列示例证明了这种方法。
Understanding the topological structure of phase space for dynamical systems in higher dimensions is critical for numerous applications, including the computation of chemical reaction rates and transport of objects in the solar system. Many topological techniques have been developed to study maps of two-dimensional (2D) phase spaces, but extending these techniques to higher dimensions is often a major challenge or even impossible. Previously, one such technique, homotopic lobe dynamics (HLD), was generalized to analyze the stable and unstable manifolds of hyperbolic fixed points for volume-preserving maps in three dimensions. This prior work assumed the existence of an equatorial heteroclinic intersection curve, which was the natural generalization of the 2D case. The present work extends the previous analysis to the case where no such equatorial curve exists, but where intersection curves, connecting fixed points may exist. In order to extend HLD to this case, we shift our perspective from the invariant manifolds of the fixed points to the invariant manifolds of the invariant circle formed by the fixed-point-to-fixed-point intersections. The output of the HLD technique is a symbolic description of the minimal underlying topology of the invariant manifolds. We demonstrate this approach through a series of examples.