论文标题
改进了亚辅助组合拍卖的真实性机制:打破对数障碍
Improved Truthful Mechanisms for Subadditive Combinatorial Auctions: Breaking the Logarithmic Barrier
论文作者
论文摘要
我们提出了一种计算效率的真实性机制,用于与亚addive bidders组合拍卖,该机制可实现$ o(((\ log \!\!\ log {m})^3)$ - 使用$ O(n)$需求queries queries $ o(这里分别是$ m $和$ n $的项目和竞标者的数量。这打破了长期存在的对数障碍,以追溯到$ o(\ log {m} \ cdot \ log \!\!\ log {m log {m})$ - dobzinski的近似机制。沿途,我们还可以改善并可以简化正式的机制。
We present a computationally-efficient truthful mechanism for combinatorial auctions with subadditive bidders that achieves an $O((\log\!\log{m})^3)$-approximation to the maximum welfare in expectation using $O(n)$ demand queries; here $m$ and $n$ are the number of items and bidders, respectively. This breaks the longstanding logarithmic barrier for the problem dating back to the $O(\log{m}\cdot\log\!\log{m})$-approximation mechanism of Dobzinski from 2007. Along the way, we also improve and considerably simplify the state-of-the-art mechanisms for submodular bidders.