论文标题
旋转对称性多重函数的性能及其芦苇毛刺式光谱
Properties of Rotational Symmetric multiple valued functions and their Reed-Muller-Fourier spectra
论文作者
论文摘要
来自布尔域的旋转对称函数的概念扩展到多价值(MV)域。结果表明,对称函数是旋转对称函数的子集。表现出这种对称性的功能可以给出紧凑的值矢量表示。结果表明,函数的芦苇 - 毛刺频谱保留了对称性的类型,因此可以给出与相应函数的紧凑值向量相同长度的紧凑矢量表示。提出了一种方法来计算来自其紧凑型表示的对称和旋转对称函数的RMF光谱。给出了3个值和4值函数的示例。
The concept of rotation symmetric functions from the Boolean domain is extended to the multiple-valued (MV) domain. It is shown that symmetric functions are a subset of the rotation symmetric functions. Functions exhibiting these kinds of symmetry may be given a compact value vector representation. It is shown that the Reed-Muller-Fourier spectrum of a function preserves the kind of symmetry and therefore it may be given a compact vector representation of the same length as the compact value vector of the corresponding function. A method is presented for calculating the RMF spectrum of symmetric and rotation symmetric functions from their compact representations. Examples are given for 3-valued and 4-valued functions.