论文标题

使用深神经网络对X射线图像进行X射线图像的分类

COVID-19 Classification of X-ray Images Using Deep Neural Networks

论文作者

Goldstein, Elisha, Keidar, Daphna, Yaron, Daniel, Shachar, Yair, Blass, Ayelet, Charbinsky, Leonid, Aharony, Israel, Lifshitz, Liza, Lumelsky, Dimitri, Neeman, Ziv, Mizrachi, Matti, Hajouj, Majd, Eizenbach, Nethanel, Sela, Eyal, Weiss, Chedva S, Levin, Philip, Benjaminov, Ofer, Bachar, Gil N, Tamir, Shlomit, Rapson, Yael, Suhami, Dror, Dror, Amiel A, Bogot, Naama R, Grubstein, Ahuva, Shabshin, Nogah, Elyada, Yishai M, Eldar, Yonina C

论文摘要

在2019年冠状病毒病(COVID-19)暴发中,胸部X射线(CXR)成像在诊断和监测COVID-19患者中起着重要作用。机器学习解决方案已被证明可用于在一系列医学环境中的X射线分析和分类。这项研究的目的是创建和评估用于诊断Covid-19的机器学习模型,并根据其X射线扫描提供一种工具来搜索类似患者。在这项回顾性研究中,使用预先训练的深度学习模型(RENET50)构建了一个分类器,并通过数据增强和肺部分段来增强,以检测2018年1月至2020年7月在2020年7月在以色列的四家医院收集的正面CXR图像中的COVID-19。基于网络结果实现了最接近的邻居算法,该结果标识了与给定图像最相似的图像。使用接收器操作特征(ROC)曲线和Precision-Recall(P-R)曲线的曲线(AUC)下的精度,灵敏度,敏感性,敏感性,敏感性(AUC)的面积进行评估。这项研究的数据集包括1384例患者(63 +/- 18岁,552名男性),包括2362个CXR,用于正值和阴性COVID-19的平衡。我们的模型达到了89.7%(314/350)的准确性,在COVID-19中的敏感性为87.1%(156/179)在测试数据集中的敏感性,其中包括原始数据的15%(350 of 2326),其ROC 0.95和P-R Curve 0.94的AUC为0.94。对于每个图像,我们都以最相似的基于DNN的图像嵌入来检索图像;这些可用于与以前的情况进行比较。

In the midst of the coronavirus disease 2019 (COVID-19) outbreak, chest X-ray (CXR) imaging is playing an important role in the diagnosis and monitoring of patients with COVID-19. Machine learning solutions have been shown to be useful for X-ray analysis and classification in a range of medical contexts. The purpose of this study is to create and evaluate a machine learning model for diagnosis of COVID-19, and to provide a tool for searching for similar patients according to their X-ray scans. In this retrospective study, a classifier was built using a pre-trained deep learning model (ReNet50) and enhanced by data augmentation and lung segmentation to detect COVID-19 in frontal CXR images collected between January 2018 and July 2020 in four hospitals in Israel. A nearest-neighbors algorithm was implemented based on the network results that identifies the images most similar to a given image. The model was evaluated using accuracy, sensitivity, area under the curve (AUC) of receiver operating characteristic (ROC) curve and of the precision-recall (P-R) curve. The dataset sourced for this study includes 2362 CXRs, balanced for positive and negative COVID-19, from 1384 patients (63 +/- 18 years, 552 men). Our model achieved 89.7% (314/350) accuracy and 87.1% (156/179) sensitivity in classification of COVID-19 on a test dataset comprising 15% (350 of 2326) of the original data, with AUC of ROC 0.95 and AUC of the P-R curve 0.94. For each image we retrieve images with the most similar DNN-based image embeddings; these can be used to compare with previous cases.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源