论文标题
EGMM:用于聚类的高斯混合模型的证据版本
EGMM: an Evidential Version of the Gaussian Mixture Model for Clustering
论文作者
论文摘要
高斯混合物模型(GMM)提供了一个简单但原则上的聚类框架,具有适合统计推断的属性。在本文中,我们提出了一种新的基于模型的聚类算法,称为EGMM(证据GMM),在信念函数的理论框架中,以更好地表征集群成员的不确定性。通过代表每个对象的群集成员的质量函数,提出了由所需群集的功能组组成的组件组成的证据高斯混合物分布来对整个数据集进行建模。 EGMM中的参数通过特殊设计的期望最大化(EM)算法估算。还提供了有效性指数,允许自动确定正确数量的簇数。所提出的EGMM与经典GMM一样简单,但可以为所考虑的数据集生成更有信息的证据分区。合成和实际数据集实验表明,所提出的EGMM的性能要比其他代表性聚类算法更好。此外,通过应用多模式脑图像分割的应用也证明了它的优势。
The Gaussian mixture model (GMM) provides a simple yet principled framework for clustering, with properties suitable for statistical inference. In this paper, we propose a new model-based clustering algorithm, called EGMM (evidential GMM), in the theoretical framework of belief functions to better characterize cluster-membership uncertainty. With a mass function representing the cluster membership of each object, the evidential Gaussian mixture distribution composed of the components over the powerset of the desired clusters is proposed to model the entire dataset. The parameters in EGMM are estimated by a specially designed Expectation-Maximization (EM) algorithm. A validity index allowing automatic determination of the proper number of clusters is also provided. The proposed EGMM is as simple as the classical GMM, but can generate a more informative evidential partition for the considered dataset. The synthetic and real dataset experiments show that the proposed EGMM performs better than other representative clustering algorithms. Besides, its superiority is also demonstrated by an application to multi-modal brain image segmentation.