论文标题

邻里事务:影响有限访问权限的社交网络中的最大化

Neighborhood Matters: Influence Maximization in Social Networks with Limited Access

论文作者

Feng, Chen, Fu, Luoyi, Jiang, Bo, Zhang, Haisong, Wang, Xinbing, Tang, Feilong, Chen, Guihai

论文摘要

影响最大化(IM)的目的是通过向有影响力的用户(称为播种)提供折扣来最大程度地扩大影响力的传播。在许多应用程序中,由于用户的隐私问题,压倒性的网络量表等,很难按照网络中的任何用户。相反,最初只能访问一小部分用户。这种访问限制将大大损害影响的传播,因为IM通常依赖于高级用户的种子,由于社交网络的幂律结构,这在如此小的子集中尤为罕见。在本文中,我们试图通过考虑种子和扩散不确定性的自适应方法在现实世界中解决有限的IM。具体来说,我们考虑使用细粒度的折扣,并假设用户可以接受折扣概率。扩散过程由独立的级联模型描述。为了克服访问限制,我们证明了邻居在预期中具有更高程度的固定友谊悖论(FP)现象,并提出了一个两阶段的播种模型,其中嵌入了FP,邻居被种子。在此基础上,为了进行比较,我们制定了非自适应病例和适应性案例,两者都被证明是NP-HARD。在非自适应情况下,折扣会一次分配给用户。我们显示了影响力传播的单调性。折扣分配并设计一个两个阶段的坐标下降框架,以决定折扣分配。在自适应情况下,根据对现有播种和扩散结果的观察,用户依次播种。我们证明了在两个阶段的影响扩散函数的自适应表现性和次数。然后,提出了一系列自适应贪婪算法,并具有恒定近似比。

Influence maximization (IM) aims at maximizing the spread of influence by offering discounts to influential users (called seeding). In many applications, due to user's privacy concern, overwhelming network scale etc., it is hard to target any user in the network as one wishes. Instead, only a small subset of users is initially accessible. Such access limitation would significantly impair the influence spread, since IM often relies on seeding high degree users, which are particularly rare in such a small subset due to the power-law structure of social networks. In this paper, we attempt to solve the limited IM in real-world scenarios by the adaptive approach with seeding and diffusion uncertainty considered. Specifically, we consider fine-grained discounts and assume users accept the discount probabilistically. The diffusion process is depicted by the independent cascade model. To overcome the access limitation, we prove the set-wise friendship paradox (FP) phenomenon that neighbors have higher degree in expectation, and propose a two-stage seeding model with the FP embedded, where neighbors are seeded. On this basis, for comparison we formulate the non-adaptive case and adaptive case, both proven to be NP-hard. In the non-adaptive case, discounts are allocated to users all at once. We show the monotonicity of influence spread w.r.t. discount allocation and design a two-stage coordinate descent framework to decide the discount allocation. In the adaptive case, users are sequentially seeded based on observations of existing seeding and diffusion results. We prove the adaptive submodularity and submodularity of the influence spread function in two stages. Then, a series of adaptive greedy algorithms are proposed with constant approximation ratio.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源