论文标题

推荐系统嵌入的多步对抗扰动

Multi-Step Adversarial Perturbations on Recommender Systems Embeddings

论文作者

Anelli, Vito Walter, Bellogín, Alejandro, Deldjoo, Yashar, Di Noia, Tommaso, Merra, Felice Antonio

论文摘要

推荐系统(RSS)在学习用户的偏好方面取得了出色的表现,并帮助他们找到最合适的产品。计算机视觉域中对抗机器学习(AML)的最新进展提高了人们对基于最先进的模型推荐人安全的兴趣。最近,当机器学习的对抗扰动污染模型参数时,已经确认了几个基于最新模型的推荐人(例如,BPR-MF)的担心建议精度的恶化。但是,尽管单步快速梯度符号方法(FGSM)是探索最多的扰动策略,但多步(迭代)扰动策略在计算机视觉域中表现出较高的效力,但在建议任务中已被高度研究。 在这项工作中,我们受到CV域中提出的基本迭代方法(BIM)和预计的梯度下降(PGD)策略的启发,我们适应了项目建议任务的多步策略,以研究在最小的对手差异下基于嵌入的建议模型的可能弱点。与单步扰动的幅度固定,我们说明了多个步骤扰动的最高疗效,而单步扰动的功效是对两个广泛采用的推荐数据集进行了广泛的经验评估。此外,我们研究了结构数据集特性的影响,即稀疏性,密度和大小对呈现的扰动发出的性能退化,以支持RS设计师解释由于模型参数的最小变化而引起的建议性能变化。我们的实施和数据集可在https://anonymon.4open.science/r/9f27f909-93d5-4016-b01c-8976b8c14bc5/上获得。

Recommender systems (RSs) have attained exceptional performance in learning users' preferences and helping them in finding the most suitable products. Recent advances in adversarial machine learning (AML) in the computer vision domain have raised interests in the security of state-of-the-art model-based recommenders. Recently, worrying deterioration of recommendation accuracy has been acknowledged on several state-of-the-art model-based recommenders (e.g., BPR-MF) when machine-learned adversarial perturbations contaminate model parameters. However, while the single-step fast gradient sign method (FGSM) is the most explored perturbation strategy, multi-step (iterative) perturbation strategies, that demonstrated higher efficacy in the computer vision domain, have been highly under-researched in recommendation tasks. In this work, inspired by the basic iterative method (BIM) and the projected gradient descent (PGD) strategies proposed in the CV domain, we adapt the multi-step strategies for the item recommendation task to study the possible weaknesses of embedding-based recommender models under minimal adversarial perturbations. Letting the magnitude of the perturbation be fixed, we illustrate the highest efficacy of the multi-step perturbation compared to the single-step one with extensive empirical evaluation on two widely adopted recommender datasets. Furthermore, we study the impact of structural dataset characteristics, i.e., sparsity, density, and size, on the performance degradation issued by presented perturbations to support RS designer in interpreting recommendation performance variation due to minimal variations of model parameters. Our implementation and datasets are available at https://anonymous.4open.science/r/9f27f909-93d5-4016-b01c-8976b8c14bc5/.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源