论文标题
(1+1)D理论的对称和异常:2组和对称分数
Symmetries and Anomalies of (1+1)d Theories: 2-groups and Symmetry Fractionalization
论文作者
论文摘要
我们研究了(1+1)d理论中离散的零形式和一式全局对称性的相互作用。将重点放在对称性彼此之间可以产生的相互作用上,在这个低维中,这会导致2组对称性或对称分数。讨论的很大一部分将是了解(1+1)D:理论分解的多个部门中的主要特征。我们对单一形式对称性进行测量,并评论这种对我们的理论的影响,尤其是在存在全球2组对称性的情况下。我们还实施了光谱序列,以计算骨和费米子病例中2组理论和对称性分数化理论的异常。最后,我们讨论了实施对称性的操作员的拓扑操作,并通过耦合到批量(2+1)D理论来了解此类操作的(1+1)d的影响。
We investigate the interactions of discrete zero-form and one-form global symmetries in (1+1)d theories. Focus is put on the interactions that the symmetries can have on each other, which in this low dimension result in 2-group symmetries or symmetry fractionalization. A large part of the discussion will be to understand a major feature in (1+1)d: the multiple sectors into which a theory decomposes. We perform gauging of the one-form symmetry, and remark on the effects this has on our theories, especially in the case when there is a global 2-group symmetry. We also implement the spectral sequence to calculate anomalies for the 2-group theories and symmetry fractionalized theory in the bosonic and fermionic cases. Lastly, we discuss topological manipulations on the operators which implement the symmetries, and draw insights on the (1+1)d effects of such manipulations by coupling to a bulk (2+1)d theory.