论文标题
编码的先前切成薄片的Wasserstein自动编码器用于学习潜在的歧管表示
Encoded Prior Sliced Wasserstein AutoEncoder for learning latent manifold representations
论文作者
论文摘要
尽管各种自动编码器在多个任务中都取得了成功,但传统先验的使用在编码输入数据的基础结构的能力上受到限制。我们介绍了一个编码的先前切片的Wasserstein自动编码器,其中额外的先验编码器网络了解了数据歧管的嵌入,该网络保留了数据的拓扑和几何特性,从而改善了潜在空间的结构。使用切成薄片的Wasserstein距离对自动编码器和先验编码网络进行迭代训练。通过沿着测量学的插值遍历潜在的空间,可以探索学习歧管编码的有效性,这些空间与欧几里得插值相比,该样品产生的样品在数据歧管上,因此更现实。为此,我们引入了一种基于图的算法,用于探索潜在空间中的网络地形沿网络地形插值,通过最大化路径的样品密度,同时最大程度地减少总能量。我们使用3D-Spiral数据来表明,与常规自动编码器不同,先前的数据编码是基础的几何形状,并通过网络算法演示了嵌入式数据歧管的探索。我们将框架应用于基准图像数据集,以证明在异常生成,潜在结构和地球插值中学习数据表示的优势。
While variational autoencoders have been successful in several tasks, the use of conventional priors are limited in their ability to encode the underlying structure of input data. We introduce an Encoded Prior Sliced Wasserstein AutoEncoder wherein an additional prior-encoder network learns an embedding of the data manifold which preserves topological and geometric properties of the data, thus improving the structure of latent space. The autoencoder and prior-encoder networks are iteratively trained using the Sliced Wasserstein distance. The effectiveness of the learned manifold encoding is explored by traversing latent space through interpolations along geodesics which generate samples that lie on the data manifold and hence are more realistic compared to Euclidean interpolation. To this end, we introduce a graph-based algorithm for exploring the data manifold and interpolating along network-geodesics in latent space by maximizing the density of samples along the path while minimizing total energy. We use the 3D-spiral data to show that the prior encodes the geometry underlying the data unlike conventional autoencoders, and to demonstrate the exploration of the embedded data manifold through the network algorithm. We apply our framework to benchmarked image datasets to demonstrate the advantages of learning data representations in outlier generation, latent structure, and geodesic interpolation.