论文标题
基于分层最大熵随机步行的多个红外小目标检测
Multiple Infrared Small Targets Detection based on Hierarchical Maximal Entropy Random Walk
论文作者
论文摘要
检测具有低信噪比(SCR)的多个昏暗和小目标的技术对于红外搜索和跟踪系统非常重要。在本文中,我们建立了一种从最大熵随机步行(MERW)得出的检测方法,以鲁棒检测多个小目标。最初,我们介绍了原始的merw并分析将其应用于小目标检测的可行性。但是,MERW的原始重量矩阵对干扰很敏感。因此,特定的重量矩阵的设计原则上是为了增强小目标特征并抑制强烈剪断的原理。此外,原始MERW对最显着的小目标具有强偏见的关键限制。为了实现多个小目标检测,我们开发了MERW方法的层次结构版本。基于分层MERW(HMER),我们提出了一种小的目标检测方法,如下所示。首先,使用过滤技术来平滑红外图像。其次,通过将过滤的图像导入到HMER中来获得输出图。然后,构建了系数图以融合HMER的固定污垢图。最后,使用自适应阈值将融合图的多个小目标分割。关于实际数据集的广泛实验表明,就目标增强,背景抑制和多个小目标检测而言,所提出的方法优于最新方法。
The technique of detecting multiple dim and small targets with low signal-to-clutter ratios (SCR) is very important for infrared search and tracking systems. In this paper, we establish a detection method derived from maximal entropy random walk (MERW) to robustly detect multiple small targets. Initially, we introduce the primal MERW and analyze the feasibility of applying it to small target detection. However, the original weight matrix of the MERW is sensitive to interferences. Therefore, a specific weight matrix is designed for the MERW in principle of enhancing characteristics of small targets and suppressing strong clutters. Moreover, the primal MERW has a critical limitation of strong bias to the most salient small target. To achieve multiple small targets detection, we develop a hierarchical version of the MERW method. Based on the hierarchical MERW (HMERW), we propose a small target detection method as follows. First, filtering technique is used to smooth the infrared image. Second, an output map is obtained by importing the filtered image into the HMERW. Then, a coefficient map is constructed to fuse the stationary dirtribution map of the HMERW. Finally, an adaptive threshold is used to segment multiple small targets from the fusion map. Extensive experiments on practical data sets demonstrate that the proposed method is superior to the state-of-the-art methods in terms of target enhancement, background suppression and multiple small targets detection.