论文标题

模型共享游戏:在自愿参与下分析联邦学习

Model-sharing Games: Analyzing Federated Learning Under Voluntary Participation

论文作者

Donahue, Kate, Kleinberg, Jon

论文摘要

联合学习是一个设置,每个代理都可以访问自己的数据源,将模型从本地数据组合在一起以创建全局模型。但是,如果代理从不同的分布中绘制其数据,则联合学习可能会产生一个偏见的全局模型,并非适用于每个代理。这意味着代理商面临一个基本问题:他们应该选择全球模型还是本地模型?我们展示了如何通过联盟游戏理论的框架自然分析这种情况。 我们提出以下游戏:有不同的玩家,具有不同的模型参数来控制其数据分布以及他们从自己的分布中吵架的不同数据。每个玩家的目标是在自己的分布上获得最小的预期平方误差(MSE)的模型。他们可以选择仅根据自己的数据拟合模型,或者将他们所学的参数与其他参与者的某些子集相结合。组合模型可以通过访问更多数据来减少其误差的方差部分,但由于分布的异质性而增加了偏差。 在这里,我们在线性回归和平均估计中得出了确切的预期MSE值。然后,我们在享乐游戏理论的框架中分析了结果游戏。我们研究玩家如何分为联盟,在联盟中,每组参与者共同构建模型。我们分析了三种联邦方法,对自定义的不同程度进行建模。在统一的联邦中,代理人共同产生一个模型。在粗粒联邦中,每个代理都可以将全局模型与本地模型一起加权。在细粒联邦中,每个代理都可以灵活地结合联邦所有其他代理的模型。对于每种方法,我们将玩家的稳定分区分为联盟。

Federated learning is a setting where agents, each with access to their own data source, combine models from local data to create a global model. If agents are drawing their data from different distributions, though, federated learning might produce a biased global model that is not optimal for each agent. This means that agents face a fundamental question: should they choose the global model or their local model? We show how this situation can be naturally analyzed through the framework of coalitional game theory. We propose the following game: there are heterogeneous players with different model parameters governing their data distribution and different amounts of data they have noisily drawn from their own distribution. Each player's goal is to obtain a model with minimal expected mean squared error (MSE) on their own distribution. They have a choice of fitting a model based solely on their own data, or combining their learned parameters with those of some subset of the other players. Combining models reduces the variance component of their error through access to more data, but increases the bias because of the heterogeneity of distributions. Here, we derive exact expected MSE values for problems in linear regression and mean estimation. We then analyze the resulting game in the framework of hedonic game theory; we study how players might divide into coalitions, where each set of players within a coalition jointly construct model(s). We analyze three methods of federation, modeling differing degrees of customization. In uniform federation, the agents collectively produce a single model. In coarse-grained federation, each agent can weight the global model together with their local model. In fine-grained federation, each agent can flexibly combine models from all other agents in the federation. For each method, we analyze the stable partitions of players into coalitions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源