论文标题
社交网络中以个人为中心的部分信息
Individual-centered partial information in social networks
论文作者
论文摘要
在统计网络分析中,我们经常假设可以对完整网络可用或可以采样多个子图来估计网络的各种全局属性。但是,在一个真实的社交网络中,人们经常基于他们对网络的本地观点做出决定。在这里,我们考虑了一个部分信息框架,该框架表征了以路径长度$ l $为中心的本地网络,并产生部分邻接矩阵。在$ L = 2 $的情况下,我们专注于使用流行随机块模型(SBM)及其学位校正变体(DCSBM)的(全球)社区检测的问题。我们从部分邻接矩阵的信号项中得出特征值和特征向量的理论特性,并提出了新的基于光谱的社区检测算法,这些算法在适当条件下达到一致性。我们的分析还允许我们提出一种新的中心度度量,以评估个人部分信息在确定全球社区结构中的重要性。使用模拟和真实的网络,我们演示了算法的性能,并将我们的中心度度量与其他流行的替代方案进行比较,以显示其捕获独特的节点信息。我们的结果表明,部分信息框架使我们能够比较不同个人关于全球结构的观点。
In statistical network analysis, we often assume either the full network is available or multiple subgraphs can be sampled to estimate various global properties of the network. However, in a real social network, people frequently make decisions based on their local view of the network alone. Here, we consider a partial information framework that characterizes the local network centered at a given individual by path length $L$ and gives rise to a partial adjacency matrix. Under $L=2$, we focus on the problem of (global) community detection using the popular stochastic block model (SBM) and its degree-corrected variant (DCSBM). We derive theoretical properties of the eigenvalues and eigenvectors from the signal term of the partial adjacency matrix and propose new spectral-based community detection algorithms that achieve consistency under appropriate conditions. Our analysis also allows us to propose a new centrality measure that assesses the importance of an individual's partial information in determining global community structure. Using simulated and real networks, we demonstrate the performance of our algorithms and compare our centrality measure with other popular alternatives to show it captures unique nodal information. Our results illustrate that the partial information framework enables us to compare the viewpoints of different individuals regarding the global structure.