论文标题

超图规律性和较高的Arity VC维度

Hypergraph regularity and higher arity VC-dimension

论文作者

Chernikov, Artem, Towsner, Henry

论文摘要

我们概括了一个事实,即可以通过矩形近似具有小的VC维度的图,表明具有小VC_K-dimension(等效地,省略固定有限(k+1)-partite(k+1) - 套分(k+1) - 均匀的超毛图)的高图可以由k-ary cylinder集近似。 用超图的规律性语言,这表明,当h是某些k <k'的k'-均匀超图具有小的vc_k-尺寸时,h hypergraph juroparity只需要第一个k级的h分解时,一个人就可以使用h可以使用一组thertices,对k-tairs和k-tuples的cy来近似h - 接近0或接近1。 我们还表现出合适的相反:具有较大VC_K-dimension的K'-均匀的超图不能在顶点的所有措施下均匀地具有统一的近似值。

We generalize the fact that graphs with small VC-dimension can be approximated by rectangles, showing that hypergraphs with small VC_k-dimension (equivalently, omitting a fixed finite (k+1)-partite (k+1)-uniform hypergraph) can be approximated by k-ary cylinder sets. In the language of hypergraph regularity, this shows that when H is a k'-uniform hypergraph with small VC_k-dimension for some k<k', the decomposition of H given by hypergraph regularity only needs the first k levels---one can approximate H using sets of vertices, sets of pairs, and so on up to sets of k-tuples---and that on most of the resulting k-ary cylinder sets, the density of H is either close to 0 or close to 1. We also show a suitable converse: k'-uniform hypergraphs with large VC_k-dimension cannot have such approximations uniformly under all measures on the vertices.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源