论文标题

在不断变化的环境中,二进制神经网络可用于记忆效率有效的视觉位置识别

Binary Neural Networks for Memory-Efficient and Effective Visual Place Recognition in Changing Environments

论文作者

Ferrarini, Bruno, Milford, Michael, McDonald-Maier, Klaus D., Ehsan, Shoaib

论文摘要

Visual Place识别(VPR)是机器人在使用视觉数据之前是否访问过地点的能力。尽管在极端的环境外观变化下,传统的手工制作的VPR手工制作方法失败,但基于卷积神经网络(CNN)的手工制作的方法实现了最新的性能,但导致运行时的繁重过程和模型大小,需要大量内存。因此,基于CNN的方法不适合资源受限的平台,例如小型机器人和无人机。在本文中,我们采用了多步骤方法,以降低模型参数的精度,将其与网络深度降低相结合,分类器阶段的神经元更少,以提出一类新的高度紧凑模型,从而大大降低内存需求和计算工作,同时维持您的State-Art-Art-Art-Art VPR性能。据我们所知,这是提出二进制神经网络的首次尝试,以在不断变化的条件下有效地解决视觉位置识别问题,并大大减少了资源需求。当考虑到其完全精确和更深层次的同时,我们表现最佳的二进制神经网络(称为Floppynet)可以达到可比的VPR性能,同时消耗了99%的记忆力,并提高了推理速度七次。

Visual place recognition (VPR) is a robot's ability to determine whether a place was visited before using visual data. While conventional hand-crafted methods for VPR fail under extreme environmental appearance changes, those based on convolutional neural networks (CNNs) achieve state-of-the-art performance but result in heavy runtime processes and model sizes that demand a large amount of memory. Hence, CNN-based approaches are unsuitable for resource-constrained platforms, such as small robots and drones. In this paper, we take a multi-step approach of decreasing the precision of model parameters, combining it with network depth reduction and fewer neurons in the classifier stage to propose a new class of highly compact models that drastically reduces the memory requirements and computational effort while maintaining state-of-the-art VPR performance. To the best of our knowledge, this is the first attempt to propose binary neural networks for solving the visual place recognition problem effectively under changing conditions and with significantly reduced resource requirements. Our best-performing binary neural network, dubbed FloppyNet, achieves comparable VPR performance when considered against its full-precision and deeper counterparts while consuming 99% less memory and increasing the inference speed seven times.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源