论文标题
evryflare III:温度演变和可居住性影响数十个超级流域,同时观察到了Evryscope和Tess
EvryFlare III: Temperature Evolution and Habitability Impacts of Dozens of Superflares Observed Simultaneously by Evryscope and TESS
论文作者
论文摘要
超级流域可能会为岩石可居住区M-warf行星(M-earths)提供生物学相关的紫外线辐射的主要来源,改变行星气氛和表面寿命的条件。组合线和连续耀斑发射通常是由9000 K黑体近似的。如果超级流量更热,则紫外线发射可能比光学预测的高10倍。但是,未知的M-dwarf超级流量达到9000 K以上的温度。只有少数M-Warf Superflares被记录为多波长高振动观测值。我们使用同时使用Evryscope和Tess观测值将文献中事件的总数翻了一番,以提供对M-Dwarf Superflares温度演化的首次系统探索。我们还增加了〜10倍,并增加了具有时间分辨的黑体进化的超跨M-warfs的数量。我们从27 k5-m5矮人的42次超级弹药时测量2分钟节奏的温度。我们发现随着耀斑能量和冲动,超荧光峰温度(定义为与耀斑FWHM相对应的温度平均值)增加。我们发现在14,000 K以上的温度下发出的时间耀斑取决于能量。我们发现43%的耀斑散发到14,000 K以上,23%的发射量高于20,000 K和5%以上的散发器。最大且最热的耀斑短暂地达到了42,000K。有些射击达到42,000K。在超级弹药中,有些不达到14,000K。在超级弹药中,我们估算了<200 Myr <200 Myr extimate m-eartimate m-eartimate M-Eartimate M-Eartimate top top top-aTmospher-atmospher-atmospher uv flux up-at-flux uv-th 3 and^20^20 f。 M^-2,100-1000x来自Proxima Cen的时间平均XUV通量。
Superflares may provide the dominant source of biologically relevant UV radiation to rocky habitable zone M-dwarf planets (M-Earths), altering planetary atmospheres and conditions for surface life. The combined line and continuum flare emission has usually been approximated by a 9000 K blackbody. If superflares are hotter, then the UV emission may be 10X higher than predicted from the optical. However, it is unknown for how long M-dwarf superflares reach temperatures above 9000 K. Only a handful of M-dwarf superflares have been recorded with multi-wavelength high-cadence observations. We double the total number of events in the literature using simultaneous Evryscope and TESS observations to provide the first systematic exploration of the temperature evolution of M-dwarf superflares. We also increase the number of superflaring M-dwarfs with published time-resolved blackbody evolution by ~10X. We measure temperatures at 2 min cadence for 42 superflares from 27 K5-M5 dwarfs. We find superflare peak temperatures (defined as the mean of temperatures corresponding to flare FWHM) increase with flare energy and impulse. We find the amount of time flares emit at temperatures above 14,000 K depends on energy. We discover 43% of the flares emit above 14,000 K, 23% emit above 20,000 K and 5% emit above 30,000 K. The largest and hottest flare briefly reached 42,000 K. Some do not reach 14,000 K. During superflares, we estimate M-Earths orbiting <200 Myr stars typically receive a top-of-atmosphere UV-C flux of ~120 W m^-2 and up to 10^3 W m^-2, 100-1000X the time-averaged XUV flux from Proxima Cen.