论文标题

在多体局部阶段缺乏真正的定位

Absence of true localization in many-body localized phases

论文作者

Kiefer-Emmanouilidis, Maximilian, Unanyan, Razmik, Fleischhauer, Michael, Sirker, Jesko

论文摘要

我们最近显示,在多体局部(MBL)相中,纠缠熵的对数生长伴随着数字熵的缓慢生长,$ s_n \ sim \ sim \ ln \ ln t $。在这里,我们为无序的海森堡链提供了$ s_n(t)$的深入数值研究,并表明这种行为不是短暂的,即使对于非常强大的疾病也是如此。 Calculating the truncated Rényi number entropy $S_N^{(α)}(t)=(1-α)^{-1}\ln\sum_n p^α(n)$ for $α\ll 1$ and $p(n)>p_c$ -- which is sensitive to large number fluctuations occurring with low probability -- we demonstrate that the particle number distribution $p(n)$ in one half of该系统具有不断增长的尾巴。这表明在相互作用的情况下,分区之间的颗粒数量越来越缓慢但稳定增加,并且与安德森本地化形成鲜明对比,我们表明$ s_n^{(α\ to 0)}(t)$饱和。此外,我们还表明,$ s_n $的增长不是$ \ mathit,而不是$ \ Mathit的后果,而是稀有地区的后果,而是典型的行为。这些发现提供了有力的证据,表明即使对于非常强大但有限的疾病,相互作用系统也永远不会完全定位。

We have recently shown that the logarithmic growth of the entanglement entropy following a quantum quench in a many-body localized (MBL) phase is accompanied by a slow growth of the number entropy, $S_N\sim\ln\ln t$. Here we provide an in-depth numerical study of $S_N(t)$ for the disordered Heisenberg chain and show that this behavior is not transient and persists even for very strong disorder. Calculating the truncated Rényi number entropy $S_N^{(α)}(t)=(1-α)^{-1}\ln\sum_n p^α(n)$ for $α\ll 1$ and $p(n)>p_c$ -- which is sensitive to large number fluctuations occurring with low probability -- we demonstrate that the particle number distribution $p(n)$ in one half of the system has a continuously growing tail. This indicates a slow but steady increase of the number of particles crossing between the partitions in the interacting case, and is in sharp contrast to Anderson localization, for which we show that $S_N^{(α\to 0)}(t)$ saturates for any cutoff $p_c>0$. We show, furthermore, that the growth of $S_N$ is $\mathit not$ the consequence of rare states or rare regions but rather represents typical behavior. These findings provide strong evidence that the interacting system is never fully localized even for very strong but finite disorder.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源