论文标题
eigengame:pca作为纳什平衡
EigenGame: PCA as a Nash Equilibrium
论文作者
论文摘要
我们介绍了主体组件分析(PCA)作为竞争性游戏的新颖观点,其中每个近似特征向量都由一个球员控制,其目标是最大化自己的效用功能。我们分析了此PCA游戏的属性及其基于梯度的更新的行为。所得的算法 - 将OJA规则中的元素与广义的革兰氏阴性正交化结合在一起 - 自然分散,因此可以通过消息传递并平行。我们通过大型图像数据集和神经网络激活的实验证明了算法的可伸缩性。我们讨论了PCA作为可区分游戏的新观点如何导致进一步的算法发展和见解。
We present a novel view on principal component analysis (PCA) as a competitive game in which each approximate eigenvector is controlled by a player whose goal is to maximize their own utility function. We analyze the properties of this PCA game and the behavior of its gradient based updates. The resulting algorithm -- which combines elements from Oja's rule with a generalized Gram-Schmidt orthogonalization -- is naturally decentralized and hence parallelizable through message passing. We demonstrate the scalability of the algorithm with experiments on large image datasets and neural network activations. We discuss how this new view of PCA as a differentiable game can lead to further algorithmic developments and insights.