论文标题

用于多通道规范相关分析的生物学上合理的神经网络

A biologically plausible neural network for multi-channel Canonical Correlation Analysis

论文作者

Lipshutz, David, Bahroun, Yanis, Golkar, Siavash, Sengupta, Anirvan M., Chklovskii, Dmitri B.

论文摘要

皮质金字塔神经元从多个不同的神经种群中接收输入,并将这些输入整合到不同的树突室中。我们探讨了皮质微电路实施规范相关分析(CCA)的可能性,这是一种无监督的学习方法,该方法将输入投射到一个共同的子空间上,从而最大程度地提高了投影之间的相关性。为此,我们寻求可以在生物学上合理的神经网络中实现的多渠道CCA算法。为了生物学上的合理性,我们要求网络在在线设置中运行,其突触更新规则是本地的。从新颖的CCA目标函数开始,我们得出了一种在线优化算法,其优化步骤可以在具有多室神经元和本地非Hebbian学习规则的单层神经网络中实现。我们还得出了具有自适应输出等级和输出美白的在线CCA算法的扩展。有趣的是,扩展图映射到神经网络上,其神经结构和突触更新类似于神经回路和突触可塑性,在皮质金字塔神经元中实验观察到了突触可塑性。

Cortical pyramidal neurons receive inputs from multiple distinct neural populations and integrate these inputs in separate dendritic compartments. We explore the possibility that cortical microcircuits implement Canonical Correlation Analysis (CCA), an unsupervised learning method that projects the inputs onto a common subspace so as to maximize the correlations between the projections. To this end, we seek a multi-channel CCA algorithm that can be implemented in a biologically plausible neural network. For biological plausibility, we require that the network operates in the online setting and its synaptic update rules are local. Starting from a novel CCA objective function, we derive an online optimization algorithm whose optimization steps can be implemented in a single-layer neural network with multi-compartmental neurons and local non-Hebbian learning rules. We also derive an extension of our online CCA algorithm with adaptive output rank and output whitening. Interestingly, the extension maps onto a neural network whose neural architecture and synaptic updates resemble neural circuitry and synaptic plasticity observed experimentally in cortical pyramidal neurons.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源