论文标题
为什么对抗互动会产生非均匀模式:图灵不稳定性的伪反应扩散模型
Why Adversarial Interaction Creates Non-Homogeneous Patterns: A Pseudo-Reaction-Diffusion Model for Turing Instability
论文作者
论文摘要
在图灵的开创性反应扩散(RD)模型之后,他的基本方程式的优雅缓解了围绕模式形成的许多怀疑主义。尽管图灵模型是一种简化和理想化,但它是最著名的理论模型之一,将模式解释为让人联想到自然界中观察到的模型。多年来,已经做出了一致的努力来调整理论模型,以解释真实系统中的模式。识别RD系统的特定动态的明显困难使问题特别具有挑战性。有趣的是,我们观察到具有对抗相互作用的神经元系统中的图灵样模式。在这项研究中,我们建立了图灵不稳定性以创造这种模式的参与。通过理论和实证研究,我们提出了一个伪反应扩散模型,以解释可能是这些现象的基础的机制。尽管有监督的学习达到同质平衡,但本文表明,对手的引入有助于打破这种同质性,以在平衡下创建非均匀模式。此外,我们证明,即使在对抗性相互作用下,随机初始化的梯度下降也可能会呈指数级的快速收敛到$ε$ - 稳定点。此外,与唯一的监督不同,我们表明在对抗相互作用下获得的解决方案不仅限于初始化围绕初始化的微小子空间。
Long after Turing's seminal Reaction-Diffusion (RD) model, the elegance of his fundamental equations alleviated much of the skepticism surrounding pattern formation. Though Turing model is a simplification and an idealization, it is one of the best-known theoretical models to explain patterns as a reminiscent of those observed in nature. Over the years, concerted efforts have been made to align theoretical models to explain patterns in real systems. The apparent difficulty in identifying the specific dynamics of the RD system makes the problem particularly challenging. Interestingly, we observe Turing-like patterns in a system of neurons with adversarial interaction. In this study, we establish the involvement of Turing instability to create such patterns. By theoretical and empirical studies, we present a pseudo-reaction-diffusion model to explain the mechanism that may underlie these phenomena. While supervised learning attains homogeneous equilibrium, this paper suggests that the introduction of an adversary helps break this homogeneity to create non-homogeneous patterns at equilibrium. Further, we prove that randomly initialized gradient descent with over-parameterization can converge exponentially fast to an $ε$-stationary point even under adversarial interaction. In addition, different from sole supervision, we show that the solutions obtained under adversarial interaction are not limited to a tiny subspace around initialization.