论文标题

限制和全局$ su(3)$颜色对称性

Confinement and the Global $SU(3)$ Color Symmetry

论文作者

Chen, Ying

论文摘要

讨论了全球$ SU(3)$颜色对称性及其物理后果。如果该电荷产生的颜色场是正确极化的,则Nöther电流实际上受颜色电荷的保守物质电流的控制。电荷的颜色场强度可能具有均匀的部分,这是由于非平凡的QCD真空场和非零Gluon冷凝物,这意味着具有净色电荷的系统的自我能源是无限的,因此不能以自由状态存在。这正是颜色限制的含义。因此,具有CASIMIR缩放的特征的Cornell型电势是针对由静态颜色电荷和反电荷组成的彩色单元系统的。均匀的颜色场还意味着强子的尺寸最小,能量最小。此外,全局$ su(3)$颜色对称性要求最小的不可约的颜色单系统只能是$ q \ bar {q} $,$ qqq $,$ gg $,$ ggg $,$ ggg $,$ q \ bar {q} q} q} g $,$ qqqg $,$ qQQG $ and $ \ bar {q} Q}在没有其他结合机制的情况下,多夸克系统只能作为分子构型存在。

The global $SU(3)$ color symmetry and its physical consequences are discussed. The Nöther current is actually governed by the conserved matter current of color charges if the color field generated by this charge is properly polarized. The color field strength of a charge can have a uniform part due to the nontrivial QCD vacuum field and the nonzero gluon condensate, which implies that the self-energy of a system with a net color charge is infinite and thereby cannot exist as a free state. This is precisely what the color confinement means. Accordingly, the Cornell type potential with the feature of the Casimir scaling is derived for a color singlet system composed of a static color charge and an anti-charge. The uniform color field also implies that a hadron has a minimal size and a minimal energy. Furthermore, the global $SU(3)$ color symmetry requires that the minimal irreducible color singlet systems can only be $q\bar{q}$, $qqq$, $gg$, $ggg$, $q\bar{q}g$, $qqqg$ and $\bar{q}\bar{q}\bar{q}g$, etc., as such a multi-quark systems can only exist as a molecular configurations if there are no other binding mechanisms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源