论文标题

科学机器学习生命周期中的工作流程

Workflow Provenance in the Lifecycle of Scientific Machine Learning

论文作者

Souza, Renan, Azevedo, Leonardo G., Lourenço, Vítor, Soares, Elton, Thiago, Raphael, Brandão, Rafael, Civitarese, Daniel, Brazil, Emilio Vital, Moreno, Marcio, Valduriez, Patrick, Mattoso, Marta, Cerqueira, Renato, Netto, Marco A. S.

论文摘要

机器学习(ML)已经从根本上改变了几个业务。最近,它也深刻地影响了计算科学和工程领域,例如地球科学,气候科学和健康科学。在这些领域中,用户需要进行全面的数据分析,结合了科学数据和ML模型,以提供关键要求,例如可重复性,模型解释性和实验数据理解。但是,科学的ML是多学科,异质性的,并且受域的物理约束影响,使此类分析更具挑战性。在这项工作中,我们利用工作流程技术来建立整体观点,以支持科学ML的生命周期。我们为数据分析的生命周期和分类学表征(i)表征; (ii)具有W3C PROD符合数据表示和参考系统体系结构的设计原则以构建此视图; (iii)使用393个节点和946 GPU的HPC簇在油气案例中进行评估后学习的教训。实验表明,原理可以使查询与ML模型相结合,同时保持低廉的开销(<1%),高可扩展性和在某些工作负载下,而没有我们的代表,则在某些工作负载下进行查询加速度的数量级。

Machine Learning (ML) has already fundamentally changed several businesses. More recently, it has also been profoundly impacting the computational science and engineering domains, like geoscience, climate science, and health science. In these domains, users need to perform comprehensive data analyses combining scientific data and ML models to provide for critical requirements, such as reproducibility, model explainability, and experiment data understanding. However, scientific ML is multidisciplinary, heterogeneous, and affected by the physical constraints of the domain, making such analyses even more challenging. In this work, we leverage workflow provenance techniques to build a holistic view to support the lifecycle of scientific ML. We contribute with (i) characterization of the lifecycle and taxonomy for data analyses; (ii) design principles to build this view, with a W3C PROV compliant data representation and a reference system architecture; and (iii) lessons learned after an evaluation in an Oil & Gas case using an HPC cluster with 393 nodes and 946 GPUs. The experiments show that the principles enable queries that integrate domain semantics with ML models while keeping low overhead (<1%), high scalability, and an order of magnitude of query acceleration under certain workloads against without our representation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源