论文标题

在各种类型的数值半径密度上达到操作员

On various types of density of numerical radius attaining operators

论文作者

Dantas, Sheldon, Kim, Sun Kwang, Lee, Han Ju, Mazzitelli, Martin

论文摘要

在本文中,我们有兴趣研究与运算符的密度相关的两种属性,这些属性达到了数值半径:Bishop-Phelps-Bollobás点和数值半径的操作属性(分别为bpbpp-nu和bpbop-nu)。我们证明,每个具有微传输规范和第二个数值索引的Banach空间严格满足BPBPP-NU的满足,并且如果$ x $的数值索引为1,则只有一维空间享受它。另一方面,我们表明bpbop-nu是一个非常限制的属性:在某些一般假设下,它仅适用于一维空间。我们还考虑了两个较弱的属性,分别是BPBPP-NU和BPBOP-NU的本地版本,其中出现在其定义中的$η$不仅取决于$ε> 0 $,还取决于状态$(x,x^*)$或数值radius for the Numerical radius oferical radius One Operator $ t $。我们解决了当地的BPBPP-NU与空间$ x $的规范的强大细分性之间的关系。我们表明,有限的维空间和$ C_0 $是满足当地bpbpp-nu的Banach空间的示例,我们展示了Banach空间的示例,具有明显的差异性规范。我们通过显示有限维空间满足本地bpbop-nu来完成论文,如果$ x $具有严格的正数索引,并且具有近似属性,则此属性等于有限的维度。

In this paper, we are interested in studying two properties related to the denseness of the operators which attain their numerical radius: the Bishop-Phelps-Bollobás point and operator properties for numerical radius (BPBpp-nu and BPBop-nu, respectively). We prove that every Banach space with micro-transitive norm and second numerical index strictly positive satisfy the BPBpp-nu and that, if the numerical index of $X$ is 1, only one-dimensional spaces enjoy it. On the other hand, we show that the BPBop-nu is a very restrictive property: under some general assumptions, it holds only for one-dimensional spaces. We also consider two weaker properties, the local versions of BPBpp-nu and BPBop-nu, where the $η$ which appears in their definition does not depend just on $ε> 0$ but also on a state $(x, x^*)$ or on a numerical radius one operator $T$. We address the relation between the local BPBpp-nu and the strong subdifferentiability of the norm of the space $X$. We show that finite dimensional spaces and $c_0$ are examples of Banach spaces satisfying the local BPBpp-nu, and we exhibit an example of a Banach space with strongly subdifferentiable norm failing it. We finish the paper by showing that finite dimensional spaces satisfy the local BPBop-nu and that, if $X$ has strictly positive numerical index and has the approximation property, this property is equivalent to finite dimensionality.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源