论文标题

用深神经网络预测U型弯曲中的流场

Predicting the flow field in a U-bend with deep neural networks

论文作者

Hajgató, Gergely, Gyires-Tóth, Bálint, Paál, György

论文摘要

本文介绍了一项基于计算流体动力学(CFD)和深层神经网络的研究,该研究重点是预测不同变形的U形管中的流场。这项工作的主要动机是了解水力动力学优化过程中深度学习范式的理由,这些过程在很大程度上依赖于计算湍流场,并且可以用诸如所呈现的模型加速。通过用深层卷积神经网络替代CFD模型,速度甚至可以是几个数量级。建立了自动几何形状创建和评估过程,以生成不同形状的二维U弯曲,并对它们进行CFD模拟。该过程产生了一个具有不同几何形状和相应流场(二维速度分布)的数据库,均在128x128等距网格上表示。该数据库用于训练编码器型样式深卷积神经网络,以预测几何形状的速度分布。检查了几何形状(二进制图像和签名距离函数)对预测的两种不同表示的影响,这两个模型都提供了可接受的预测,并加快了两个数量级。

This paper describes a study based on computational fluid dynamics (CFD) and deep neural networks that focusing on predicting the flow field in differently distorted U-shaped pipes. The main motivation of this work was to get an insight about the justification of the deep learning paradigm in hydrodynamic hull optimisation processes that heavily depend on computing turbulent flow fields and that could be accelerated with models like the one presented. The speed-up can be even several orders of magnitude by surrogating the CFD model with a deep convolutional neural network. An automated geometry creation and evaluation process was set up to generate differently shaped two-dimensional U-bends and to carry out CFD simulation on them. This process resulted in a database with different geometries and the corresponding flow fields (2-dimensional velocity distribution), both represented on 128x128 equidistant grids. This database was used to train an encoder-decoder style deep convolutional neural network to predict the velocity distribution from the geometry. The effect of two different representations of the geometry (binary image and signed distance function) on the predictions was examined, both models gave acceptable predictions with a speed-up of two orders of magnitude.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源