论文标题
D1-D5 SCFT中扭曲的Ramond Fields的重新归一化$ _2 $
Renormalization of Twisted Ramond Fields in D1-D5 SCFT$_2$
论文作者
论文摘要
我们探索了变形的二维$ \ cal n =(4,4)$ super-Conformal $(t^4)^n /s_n $ orbifold理论,描述IIB SuperString类型的D1-D5 Brane System的界面状态。我们在Free Orbifold Point处得出了两个R带电扭曲的Ramond场和两个边缘变形操作员的四点函数的限制。该功能的特定短途限制提供了几个结构常数,OPE融合规则和一些非BPS运算符的共形维度。二阶校正(在变形参数中)对拉姆蒙德字段的两点函数(在此四点函数上定义为双重积分),事实证明是紫外线的,需要对磁场进行适当的重新归一化。我们将扭曲的Ramond地面状态的共形尺寸计算为以$ n $限制的校正。相同的积分产生了从两个Ramond磁场和一个变形算子的三点函数的结构常数的零偏差。还获得了有关校正对裸扭算子的两点函数及其重新归一化的相似结果。
We explore the Ramond sector of the deformed two-dimensional $\cal N = (4, 4)$ superconformal $(T^4)^N /S_N$ orbifold theory, describing bound states of D1-D5 brane system in type IIB superstring. We derive the large-$N$ limit of the four-point function of two R-charged twisted Ramond fields and two marginal deformation operators at the free orbifold point. Specific short-distance limits of this function provide several structure constants, the OPE fusion rules and the conformal dimensions of a few non-BPS operators. The second order correction (in the deformation parameter) to the two-point function of the Ramond fields, defined as double integrals over this four-point function, turns out to be UV-divergent, requiring an appropriate renormalization of the fields. We calculate the corrections to the conformal dimensions of the twisted Ramond ground states at the large-$N$ limit. The same integral yields the first-order deviation from zero of the structure constant of the three-point function of two Ramond fields and one deformation operator. Similar results concerning the correction to the two-point function of bare twist operators and their renormalization are also obtained.