论文标题
领带网络上的意见动态
Opinion dynamics on tie-decay networks
论文作者
论文摘要
在社交网络中,互动模式通常会随着时间而变化。我们研究了在领带网络上的意见动力学,当存在相互作用时,在相互作用之间呈指数衰减时,领带强度会立即提高。具体而言,我们制定了连续的时间拉普拉斯动力学和这些领带网络上意见动力学的离散时间模型模型,并为连续时间拉普拉斯动力学执行了数值计算。我们通过研究领带网络组合拉普拉斯矩阵的光谱差异来检查收敛速度。首先,我们比较了我们从经验数据中构建的拉普拉斯矩阵的光谱间隙以及相应的随机和聚合网络的光谱间隙。我们发现,经验网络的光谱差距往往比随机和聚集网络的光谱差异要小。其次,我们研究了光谱差距,这是领带率和时间的函数。从直觉上讲,我们预计较小的领带率会导致快速收敛,因为对于较小的衰减率,两个节点之间的每种相互作用的影响会持续更长的时间。此外,随着时间的进步并发生更多的互动,我们期望最终收敛。但是,我们证明,光谱间隙不必相对于衰减速率单调降低或相对于时间单调增加。我们的结果强调了时间网络中边缘增强和衰减之间相互作用的重要性。
In social networks, interaction patterns typically change over time. We study opinion dynamics on tie-decay networks in which tie strength increases instantaneously when there is an interaction and decays exponentially between interactions. Specifically, we formulate continuous-time Laplacian dynamics and a discrete-time DeGroot model of opinion dynamics on these tie-decay networks, and we carry out numerical computations for the continuous-time Laplacian dynamics. We examine the speed of convergence by studying the spectral gaps of combinatorial Laplacian matrices of tie-decay networks. First, we compare the spectral gaps of the Laplacian matrices of tie-decay networks that we construct from empirical data with the spectral gaps for corresponding randomized and aggregate networks. We find that the spectral gaps for the empirical networks tend to be smaller than those for the randomized and aggregate networks. Second, we study the spectral gap as a function of the tie-decay rate and time. Intuitively, we expect small tie-decay rates to lead to fast convergence because the influence of each interaction between two nodes lasts longer for smaller decay rates. Moreover, as time progresses and more interactions occur, we expect eventual convergence. However, we demonstrate that the spectral gap need not decrease monotonically with respect to the decay rate or increase monotonically with respect to time. Our results highlight the importance of the interplay between the times that edges strengthen and decay in temporal networks.